Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biosynthesis Bacteria Cellulose by Strain of Bacteria Isolated from Native Corrupt Fruit
Corresponding Author(s) : Chunxia Li
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Bacterial cellulose (BC) is an interesting biomaterial for widespread applications. However, bacterial cellulose is still expensive compared with other popular organic products and limit its widespread commercial applications. We had isolated a high bacterial cellulose producing strain from local corrupt fruit successfully. The yields of bacterial cellulose from three strains isolated from native corrupt fruit were 3.5, 5.6 and 1.2 g/L, respectively. FT-IR and XRD results indicated the bacterial cellulose fabricated from local strain was typical cellulose I.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Yang, J. Jia, J. Xing, J. Chen and S. Lu, Carbohydr. Polym., 92, 2012 (2013); doi:10.1016/j.carbpol.2012.11.065.
- J.-M. Wu and R.-H. Liu, J. Biosci. Bioeng., 115, 284 (2013); doi:10.1016/j.jbiosc.2012.09.014.
- S. Bielecki, A. Krystynowicz, M. Turkiewicz and H. Kalinowska, Bacterial Cellulose, in Biopolymers Online Wiley-VCH Verlag GmbH & Co. KGaA (2005).
- A. Yoshino, M. Tabuchi, M. Uo, H. Tatsumi, K. Hideshima, S. Kondo and J. Sekine, Acta Biomater., 9, 6116 (2013); doi:10.1016/j.actbio.2012.12.022.
- L. Segal, J.J. Creely, A.E. Martin and C.M. Conrad, Text. Res. J., 29, 786 (1959); doi:10.1177/004051755902901003.
- C. Castro, R. Zuluaga, J.-L. Putaux, G. Caro, I. Mondragon and P. Gañán, Carbohydr. Polym., 84, 96 (2011); doi:10.1016/j.carbpol.2010.10.072.
- M.U. Rani, K. Udayasankar and K.A.A. Appaiah, J. Appl. Polym. Sci., 120, 2835 (2011); doi:10.1002/app.33307.
- M.L. Nelson and R.T. O'Connor, J. Appl. Polym. Sci., 8, 1311 (1964); doi:10.1002/app.1964.070080322.
- Y. Kataoka and T. Kondo, Macromolecules, 29, 6356 (1996); doi:10.1021/ma960206d.
- D.R. Ruka, G.P. Simon and K.M. Dean, Carbohydr. Polym., 89, 613 (2012); doi:10.1016/j.carbpol.2012.03.059.
- H. Yamamoto, F. Horii and A. Hirai, Cellulose, 3, 229 (1996); doi:10.1007/BF02228804.
References
Y. Yang, J. Jia, J. Xing, J. Chen and S. Lu, Carbohydr. Polym., 92, 2012 (2013); doi:10.1016/j.carbpol.2012.11.065.
J.-M. Wu and R.-H. Liu, J. Biosci. Bioeng., 115, 284 (2013); doi:10.1016/j.jbiosc.2012.09.014.
S. Bielecki, A. Krystynowicz, M. Turkiewicz and H. Kalinowska, Bacterial Cellulose, in Biopolymers Online Wiley-VCH Verlag GmbH & Co. KGaA (2005).
A. Yoshino, M. Tabuchi, M. Uo, H. Tatsumi, K. Hideshima, S. Kondo and J. Sekine, Acta Biomater., 9, 6116 (2013); doi:10.1016/j.actbio.2012.12.022.
L. Segal, J.J. Creely, A.E. Martin and C.M. Conrad, Text. Res. J., 29, 786 (1959); doi:10.1177/004051755902901003.
C. Castro, R. Zuluaga, J.-L. Putaux, G. Caro, I. Mondragon and P. Gañán, Carbohydr. Polym., 84, 96 (2011); doi:10.1016/j.carbpol.2010.10.072.
M.U. Rani, K. Udayasankar and K.A.A. Appaiah, J. Appl. Polym. Sci., 120, 2835 (2011); doi:10.1002/app.33307.
M.L. Nelson and R.T. O'Connor, J. Appl. Polym. Sci., 8, 1311 (1964); doi:10.1002/app.1964.070080322.
Y. Kataoka and T. Kondo, Macromolecules, 29, 6356 (1996); doi:10.1021/ma960206d.
D.R. Ruka, G.P. Simon and K.M. Dean, Carbohydr. Polym., 89, 613 (2012); doi:10.1016/j.carbpol.2012.03.059.
H. Yamamoto, F. Horii and A. Hirai, Cellulose, 3, 229 (1996); doi:10.1007/BF02228804.