Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation of Heavy Atom Effect on the Low Power Upconversion
Corresponding Author(s) : Changqing Ye
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Selective low energy excitation of palladium(II)tetraphenylporphyrin (PdTPP) and palladium(II)tetrabromophenylporphyrin (PdBrTPP) in the presence of 2-chloro-9,10-di p-tolylanthracene (DTACl), respectively, can yield easily visualized upconversion fluorescence. The external and internal heavy atom effects were firstly found to significantly increase upconversion efficiency (Fuc) of emitter (DTACl) doped with PdTPP or PdBrTPP as much as 10 % under excitation of low power density at 60 mW/cm2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, R.G. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips and T.C. Schmidt, Energy Environ. Sci., 5, 6953 (2012); doi:10.1039/c2ee21136j.
- Y.T. Liang, B.K. Vijayan, K.A. Gray and M.C. Hersam, Nano Lett., 11, 2865 (2011); doi:10.1021/nl2012906.
- S. Obregóna, A. Kubackab and M. Fernández-Garcíab Colón, J. Catal., 299, 298 (2013).
- L.N. Yin, J.Q. Gao, J. Wang, B.X. Wang, R.Z. Jiang, K. Li, Y. Li and X.D. Zhang, Sep. Purif. Technol., 81, 94 (2011); doi:10.1016/j.seppur.2011.07.014.
- Q. Liu, T. Yang, W. Feng and F. Li, J. Am. Chem. Soc., 134, 5390 (2012); doi:10.1021/ja3003638.
- C. Wang, L. Cheng and Z. Liu, Biomaterials, 32, 1110 (2011); doi:10.1016/j.biomaterials.2010.09.069.
- K. Liu, X.M. Liu, Q.H. Zeng, Z.L. Zhang, L.P. Tu, T. Liu, X.G. Kong, Y.H. Wang, F. Cao, S.A.G. Lambrechts, M.C.G. Aalders and H. Zhang, ACS Nano, 6, 4054 (2012); doi:10.1021/nn300436b.
- T. Kogej, D. Beljonne, F. Meyers, J.W. Perry, S.R. Marder and J.L. Brédas, Chem. Phys. Lett., 298, 1 (1998); doi:10.1016/S0009-2614(98)01196-8.
- W.B. Ma, Y.Q. Wu, J.H. Han, D.H. Gu and F. Gan, Chem. Phys. Lett., 410, 282 (2005); doi:10.1016/j.cplett.2005.04.116.
- J.D. Bhawalkar, G.S. He and P.N. Prasad, Rep. Progr. Phys., 59, 1041 (1996); doi:10.1088/0034-4885/59/9/001.
- M. Albota, D. Beljionne, J.-L. Brédas, J. Ehrlich, J.Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, D. Perry, H. Röckel, M. Rumi, G. Subramaniam, W.W. Webb, X.L. Wu and C. Xu, Science, 281, 1653 (1998); doi:10.1126/science.281.5383.1653.
- B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.L. Wu, S.R. Marder and J.W. Perry, Nature, 3, 51 (1999).
- A. Rapaport, J. Milliez, M. Bass, A. Cassanho and H. Jenssen, J. Display Technology, 2, 68 (2006); doi:10.1109/JDT.2005.863781.
- J.H. Kim, F. Deng, F.N. Castellano and J.H. Kim, Chem. Mater., 24, 2250 (2012); doi:10.1021/cm3012414.
- S. Ji, W.H. Wu, W.T. Wu, H.M. Guo and J.Z. Zhao, Angew. Chem. Int. Ed., 50, 1626 (2011); doi:10.1002/anie.201006192.
- H.X. Mai, Y.W. Zhang, L.D. Sun and C.H. Yan, J. Phys. Chem. C, 111, 13721 (2007); doi:10.1021/jp073920d.
- M. Fischer and J. Georges, Chem. Phys. Lett., 260, 115 (1996); doi:10.1016/0009-2614(96)00838-X.
- X.M. Wang, F. Jin, Z.G. Chen, S.Q. Liu, X.H. Wang, X.M. Duan, X.T. Tao and M.H. Jiang, J. Phys. Chem. C, 115, 776 (2011); doi:10.1021/jp1081005.
References
Y.Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, R.G. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips and T.C. Schmidt, Energy Environ. Sci., 5, 6953 (2012); doi:10.1039/c2ee21136j.
Y.T. Liang, B.K. Vijayan, K.A. Gray and M.C. Hersam, Nano Lett., 11, 2865 (2011); doi:10.1021/nl2012906.
S. Obregóna, A. Kubackab and M. Fernández-Garcíab Colón, J. Catal., 299, 298 (2013).
L.N. Yin, J.Q. Gao, J. Wang, B.X. Wang, R.Z. Jiang, K. Li, Y. Li and X.D. Zhang, Sep. Purif. Technol., 81, 94 (2011); doi:10.1016/j.seppur.2011.07.014.
Q. Liu, T. Yang, W. Feng and F. Li, J. Am. Chem. Soc., 134, 5390 (2012); doi:10.1021/ja3003638.
C. Wang, L. Cheng and Z. Liu, Biomaterials, 32, 1110 (2011); doi:10.1016/j.biomaterials.2010.09.069.
K. Liu, X.M. Liu, Q.H. Zeng, Z.L. Zhang, L.P. Tu, T. Liu, X.G. Kong, Y.H. Wang, F. Cao, S.A.G. Lambrechts, M.C.G. Aalders and H. Zhang, ACS Nano, 6, 4054 (2012); doi:10.1021/nn300436b.
T. Kogej, D. Beljonne, F. Meyers, J.W. Perry, S.R. Marder and J.L. Brédas, Chem. Phys. Lett., 298, 1 (1998); doi:10.1016/S0009-2614(98)01196-8.
W.B. Ma, Y.Q. Wu, J.H. Han, D.H. Gu and F. Gan, Chem. Phys. Lett., 410, 282 (2005); doi:10.1016/j.cplett.2005.04.116.
J.D. Bhawalkar, G.S. He and P.N. Prasad, Rep. Progr. Phys., 59, 1041 (1996); doi:10.1088/0034-4885/59/9/001.
M. Albota, D. Beljionne, J.-L. Brédas, J. Ehrlich, J.Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, D. Perry, H. Röckel, M. Rumi, G. Subramaniam, W.W. Webb, X.L. Wu and C. Xu, Science, 281, 1653 (1998); doi:10.1126/science.281.5383.1653.
B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.L. Wu, S.R. Marder and J.W. Perry, Nature, 3, 51 (1999).
A. Rapaport, J. Milliez, M. Bass, A. Cassanho and H. Jenssen, J. Display Technology, 2, 68 (2006); doi:10.1109/JDT.2005.863781.
J.H. Kim, F. Deng, F.N. Castellano and J.H. Kim, Chem. Mater., 24, 2250 (2012); doi:10.1021/cm3012414.
S. Ji, W.H. Wu, W.T. Wu, H.M. Guo and J.Z. Zhao, Angew. Chem. Int. Ed., 50, 1626 (2011); doi:10.1002/anie.201006192.
H.X. Mai, Y.W. Zhang, L.D. Sun and C.H. Yan, J. Phys. Chem. C, 111, 13721 (2007); doi:10.1021/jp073920d.
M. Fischer and J. Georges, Chem. Phys. Lett., 260, 115 (1996); doi:10.1016/0009-2614(96)00838-X.
X.M. Wang, F. Jin, Z.G. Chen, S.Q. Liu, X.H. Wang, X.M. Duan, X.T. Tao and M.H. Jiang, J. Phys. Chem. C, 115, 776 (2011); doi:10.1021/jp1081005.