Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Self-Assemble Nanofibers of Tetra Phenoxy Substituted Nickel Phthalocyanine
Corresponding Author(s) : Xiguang Du
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Tetra phenoxy substituted nickel phthalocyanine nanofibers were synthesized in large scale by self-assemble. The FESEM and HRTEM micrographs indicated that the sizes of the fibers are 20-60 nm in width and 0.2-5 μm in length. The formation mechanism of nickel phthalocyanine fibers was discussed and studied by XRD and UV-visible spectra. The nickel phthalocyanine nanofibers have potential application on organic function devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Cui, L.J. Chen, M.R. Xu, H. Su and S. Ai, Anal. Chim. Acta, 712, 64 (2012); doi:10.1016/j.aca.2011.11.021.
- H. Manaa, A. Tuhl, J. Samuel, A. AL-Mulla, N.A. AL-Awadi and S. Makhseed, Opt. Commun., 284, 450 (2011); doi:10.1016/j.optcom.2010.09.018.
- H.J. Cui, R.M. Ma, P. Guo, Q. Zeng, G. Liu and X. Zhang, J. Mol. Model., 16, 303 (2010); doi:10.1007/s00894-009-0543-9.
- W.B. Duan, P.C. Lo, L. Duan, W.-P. Fong and D.K.P. Ng, Bioorg. Med. Chem., 18, 2672 (2010); doi:10.1016/j.bmc.2010.02.020.
- A. Borras, M. Aguirre, O. Groening, C. Lopez-Cartes and P. Groening, Chem. Mater., 20, 7371 (2008); doi:10.1021/cm802172p.
- H. Hasegawa, T. Kubota and S. Mashiko, Electrochim. Acta, 50, 3029 (2005); doi:10.1016/j.electacta.2004.12.040.
- G. Chintakula, S. Rajaputra and V.P. Singh, Sol. Energy Mater. Sol. Cells, 94, 34 (2010); doi:10.1016/j.solmat.2009.06.029.
- C.Y. Ma, D.L. Tian, X.K. Hou, Y.C. Chang, F.D. Cong, H.F. Yu, X.G. Du and G.T. Du, Synthesis, 741 (2005); doi:10.1055/s-2005-861795.
- C.W. Cheng, J.S. Gao, G.Y. Xu, H. Zhang, Y. Li and Y. Luo, J. Nanosci. Nanotechnol., 9, 2836 (2009); doi:10.1166/jnn.2009.046.
- M. Kimura, T. Kuroda, K. Ohta, K. Hanabusa, H. Shirai and N. Kobayashi, Langmuir, 19, 4825 (2003); doi:10.1021/la0341512.
- Y. Luo, J.S. Gao, C.W. Cheng, Y. Sun, X. Du, G. Xu and Z. Wang, Org. Electron., 9, 466 (2008); doi:10.1016/j.orgel.2008.02.008.
References
L. Cui, L.J. Chen, M.R. Xu, H. Su and S. Ai, Anal. Chim. Acta, 712, 64 (2012); doi:10.1016/j.aca.2011.11.021.
H. Manaa, A. Tuhl, J. Samuel, A. AL-Mulla, N.A. AL-Awadi and S. Makhseed, Opt. Commun., 284, 450 (2011); doi:10.1016/j.optcom.2010.09.018.
H.J. Cui, R.M. Ma, P. Guo, Q. Zeng, G. Liu and X. Zhang, J. Mol. Model., 16, 303 (2010); doi:10.1007/s00894-009-0543-9.
W.B. Duan, P.C. Lo, L. Duan, W.-P. Fong and D.K.P. Ng, Bioorg. Med. Chem., 18, 2672 (2010); doi:10.1016/j.bmc.2010.02.020.
A. Borras, M. Aguirre, O. Groening, C. Lopez-Cartes and P. Groening, Chem. Mater., 20, 7371 (2008); doi:10.1021/cm802172p.
H. Hasegawa, T. Kubota and S. Mashiko, Electrochim. Acta, 50, 3029 (2005); doi:10.1016/j.electacta.2004.12.040.
G. Chintakula, S. Rajaputra and V.P. Singh, Sol. Energy Mater. Sol. Cells, 94, 34 (2010); doi:10.1016/j.solmat.2009.06.029.
C.Y. Ma, D.L. Tian, X.K. Hou, Y.C. Chang, F.D. Cong, H.F. Yu, X.G. Du and G.T. Du, Synthesis, 741 (2005); doi:10.1055/s-2005-861795.
C.W. Cheng, J.S. Gao, G.Y. Xu, H. Zhang, Y. Li and Y. Luo, J. Nanosci. Nanotechnol., 9, 2836 (2009); doi:10.1166/jnn.2009.046.
M. Kimura, T. Kuroda, K. Ohta, K. Hanabusa, H. Shirai and N. Kobayashi, Langmuir, 19, 4825 (2003); doi:10.1021/la0341512.
Y. Luo, J.S. Gao, C.W. Cheng, Y. Sun, X. Du, G. Xu and Z. Wang, Org. Electron., 9, 466 (2008); doi:10.1016/j.orgel.2008.02.008.