Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Visible Light Driven Catalytic Properties Over Methyl Orange by Novel PtSe2/Graphene Nanocomposites
Corresponding Author(s) : Won-Chun Oh
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
High efficient graphene based platinum selenide composite photocatalyst were synthesized by ultrasonic assisted method. The “as-prepared” nanocomposites are further characterized by X-ray diffraction, scanning electron microscopy with an energy dispersive X-ray analysis, transmission electron microscopy, UV-visible absorbance spectra analysis and diffuse reflectance spectra analysis. The photocatalytic activities of the composites are investigated by the degradation of methyl orange as a standard dye. The results showed that the photocatalytic activity of PtSe2 was significantly enhanced by the loading of graphene in the composites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhang and C. Pan, Diamond Rel. Materials, 24, 1 (2012); doi:10.1016/j.diamond.2012.01.033.
- C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); doi:10.1126/science.1157996.
- M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); doi:10.1021/nl802558y.
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); doi:10.1021/nl0731872.
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, Solid State Commun., 146, 351 (2008); doi:10.1016/j.ssc.2008.02.024.
- X. Du, I. Skachko, A. Barker and E.Y. Andrei, Nat. Nanotechnol., 3, 491 (2008); doi:10.1038/nnano.2008.199.
- C. Stampfer, E. Schurtenberger, F. Molitor, J. Guttinger, T. Ihn and K. Ensslin, Nano Lett., 8, 2378 (2008); doi:10.1021/nl801225h.
- K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi and E. Jaehne, ChemPhysChem, 11, 2131 (2010); doi:10.1002/cphc.201000132.
- F. Lupo, R. Kamalakaran, C. Scheu, N. Grobert and M. Rühle, Carbon, 42, 1995 (2004); doi:10.1016/j.carbon.2004.03.037.
- X.Y. Zhang, H.P. Li, X.L. Cui and Y.H. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.
- A.Z. Abdullah and P.Y. Ling, J. Hazard. Mater., 173, 159 (2010); doi:10.1016/j.jhazmat.2009.08.060.
- K. Ullah, L. Zhu, Z.-D. Meng, S. Ye, Q. Sun and W.-C. Oh, Chem. Eng. J., 231, 76 (2013); doi: 10.1016/j.cej.2013.07.014.
- N.H. Ince and G. Tezcanli-Güyer, Ultrasonics, 42, 591 (2004); doi:10.1016/j.ultras.2004.01.097.
- G.A. Tai and W.L. Guo, Ultrason. Sonochem., 15, 350 (2008); doi:10.1016/j.ultsonch.2007.08.008.
- T. Ghosh, K.-Y. Cho, K. Ullah, V. Nikam, C.-Y. Park, Z.-D. Meng and W.-C. Oh, J. Ind. Eng. Chem., 19, 797 (2013); doi:10.1016/j.jiec.2012.10.020.
- Z.-D. Meng, L. Zhu, T. Ghosh, C.-Y. Park, K. Ullah, V. Nikam and W.-C. Oh, Bull. Korean Chem. Soc., 33, 3761 (2012); doi:10.5012/bkcs.2012.33.11.3761.
- K.J. Zhang and X.H. Liu, Appl. Surf. Sci., 257, 10379 (2011); doi:10.1016/j.apsusc.2011.06.087.
- X.Y. Zhang, H.P. Li, X.L. Cui and Y.H. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.
- Y. Li, X. Li, J. Li and J. Yin, Water Res., 40, 1119 (2006); doi:10.1016/j.watres.2005.12.042.
- Z.-D. Meng, L. Zhu, K. Ullah, S. Ye, C.-Y. Park and W.-C. Oh, Asian J. Chem., 25, 5727 (2013); doi: 10.14233/ajchem.2013.OH74.
- T. Ghosh, J.-H. Lee, Z.-D. Meng, K. Ullah, C.-Y. Park, V. Nikam and W.-C. Oh, Mater. Res. Bull., 48, 1268 (2013); doi:10.1016/j.materresbull.2012.12.023.
References
Y. Zhang and C. Pan, Diamond Rel. Materials, 24, 1 (2012); doi:10.1016/j.diamond.2012.01.033.
C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); doi:10.1126/science.1157996.
M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); doi:10.1021/nl802558y.
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); doi:10.1021/nl0731872.
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, Solid State Commun., 146, 351 (2008); doi:10.1016/j.ssc.2008.02.024.
X. Du, I. Skachko, A. Barker and E.Y. Andrei, Nat. Nanotechnol., 3, 491 (2008); doi:10.1038/nnano.2008.199.
C. Stampfer, E. Schurtenberger, F. Molitor, J. Guttinger, T. Ihn and K. Ensslin, Nano Lett., 8, 2378 (2008); doi:10.1021/nl801225h.
K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi and E. Jaehne, ChemPhysChem, 11, 2131 (2010); doi:10.1002/cphc.201000132.
F. Lupo, R. Kamalakaran, C. Scheu, N. Grobert and M. Rühle, Carbon, 42, 1995 (2004); doi:10.1016/j.carbon.2004.03.037.
X.Y. Zhang, H.P. Li, X.L. Cui and Y.H. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.
A.Z. Abdullah and P.Y. Ling, J. Hazard. Mater., 173, 159 (2010); doi:10.1016/j.jhazmat.2009.08.060.
K. Ullah, L. Zhu, Z.-D. Meng, S. Ye, Q. Sun and W.-C. Oh, Chem. Eng. J., 231, 76 (2013); doi: 10.1016/j.cej.2013.07.014.
N.H. Ince and G. Tezcanli-Güyer, Ultrasonics, 42, 591 (2004); doi:10.1016/j.ultras.2004.01.097.
G.A. Tai and W.L. Guo, Ultrason. Sonochem., 15, 350 (2008); doi:10.1016/j.ultsonch.2007.08.008.
T. Ghosh, K.-Y. Cho, K. Ullah, V. Nikam, C.-Y. Park, Z.-D. Meng and W.-C. Oh, J. Ind. Eng. Chem., 19, 797 (2013); doi:10.1016/j.jiec.2012.10.020.
Z.-D. Meng, L. Zhu, T. Ghosh, C.-Y. Park, K. Ullah, V. Nikam and W.-C. Oh, Bull. Korean Chem. Soc., 33, 3761 (2012); doi:10.5012/bkcs.2012.33.11.3761.
K.J. Zhang and X.H. Liu, Appl. Surf. Sci., 257, 10379 (2011); doi:10.1016/j.apsusc.2011.06.087.
X.Y. Zhang, H.P. Li, X.L. Cui and Y.H. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.
Y. Li, X. Li, J. Li and J. Yin, Water Res., 40, 1119 (2006); doi:10.1016/j.watres.2005.12.042.
Z.-D. Meng, L. Zhu, K. Ullah, S. Ye, C.-Y. Park and W.-C. Oh, Asian J. Chem., 25, 5727 (2013); doi: 10.14233/ajchem.2013.OH74.
T. Ghosh, J.-H. Lee, Z.-D. Meng, K. Ullah, C.-Y. Park, V. Nikam and W.-C. Oh, Mater. Res. Bull., 48, 1268 (2013); doi:10.1016/j.materresbull.2012.12.023.