Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Nano-Al2O3 Powder Using Huainan Coal Gangue by Ultrasonic
Corresponding Author(s) : Linyi Zheng
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Preparation of nano-Al2O3 powder was investigated by ultrasonic using Huainan coal gangue in this work. The calcine activation temperature was determined by differential thermal analysis combined with thermal gravity analysis (DTA/TG). The products were characterized by X-ray diffractometry, scanning electron microscopy and laser particle size analyzer. The results showed that kaolinite in Huainan coal gangue turned from crystal to amorphous at 515 ºC, the conversion rate of aluminum was 89.14 % by ultrasonic assisted acid leaching after calcination at 600 ºC and ultrasonic and dispersant had pronounced effects on preventing agglomeration in the process of generating ammonium aluminum carbonate hydroxide gel in high purity AlCl3 solution. Granulometric distributions of Al2O3 powder, calcinate of ammonium aluminum carbonate hydroxide were 11-42 nm. Those Al2O3 particles were near-spherical and the median particle diameter (D50) was 20 nm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.J. Wu, F.Y. Zeng and H.F. Yao, Coal Sci. Technol., 4, 42 (2013).
- B.Z. Tian and L. Li, Coal Technol., 7, 195 (2012).
- R.F. Chalken, L.E. Dalverny and A.G. Kim Controlled burnout at the Albright coal waste banlfire, US Bumines RI19345_(1991).
- F.G. Bell, S.E.T. Bullock, T.F.J. Halbich and P. Lindsay, Int. J. Coal Geol., 45, 195 (2001); doi:10.1016/S0166-5162(00)00033-1.
- W.J. Robertson, P.H.M. Kinnunen, J.J. Plumb, P.D. Franzmann, J.A. Puhakka, J.A.E. Gibson and P.D. Nichols, Miner. Eng., 15, 815 (2002); doi:10.1016/S0892-6875(02)00130-9.
- N.T. Bailey and R.J. Chapman, Hydrometallurgy, 18, 337 (1987); doi:10.1016/0304-386X(87)90074-0.
- L.X. Gu, J.P. Xia and Z.S. Zhang, J. Safety Environ., 12, 88 (2012).
- C.Z. Liu, Coal Proc. Compreh. Utiliz., 1, 49 (2009).
- F.Q. Cheng, L. Cui, H. Zhang, J.C. Zhang and S.M. Fan, Chinese J. Environ. Eng., 11, 99 (2007).
- C.F. Chen and Z.G. Chen, Mater. Mech. Eng., 27, 30 (2003)
- S.Y. Lu and Y.Q. He, Mater. Rev., 20, 149 (2006).
- A. Singhal, G. Skandan, A. Wang, N. Glumac, B.H. Kear and R.D. Hunt, Nanostructured Materials, 11, 545 (1999); doi:10.1016/S0965-9773(99)00343-8.
References
H.J. Wu, F.Y. Zeng and H.F. Yao, Coal Sci. Technol., 4, 42 (2013).
B.Z. Tian and L. Li, Coal Technol., 7, 195 (2012).
R.F. Chalken, L.E. Dalverny and A.G. Kim Controlled burnout at the Albright coal waste banlfire, US Bumines RI19345_(1991).
F.G. Bell, S.E.T. Bullock, T.F.J. Halbich and P. Lindsay, Int. J. Coal Geol., 45, 195 (2001); doi:10.1016/S0166-5162(00)00033-1.
W.J. Robertson, P.H.M. Kinnunen, J.J. Plumb, P.D. Franzmann, J.A. Puhakka, J.A.E. Gibson and P.D. Nichols, Miner. Eng., 15, 815 (2002); doi:10.1016/S0892-6875(02)00130-9.
N.T. Bailey and R.J. Chapman, Hydrometallurgy, 18, 337 (1987); doi:10.1016/0304-386X(87)90074-0.
L.X. Gu, J.P. Xia and Z.S. Zhang, J. Safety Environ., 12, 88 (2012).
C.Z. Liu, Coal Proc. Compreh. Utiliz., 1, 49 (2009).
F.Q. Cheng, L. Cui, H. Zhang, J.C. Zhang and S.M. Fan, Chinese J. Environ. Eng., 11, 99 (2007).
C.F. Chen and Z.G. Chen, Mater. Mech. Eng., 27, 30 (2003)
S.Y. Lu and Y.Q. He, Mater. Rev., 20, 149 (2006).
A. Singhal, G. Skandan, A. Wang, N. Glumac, B.H. Kear and R.D. Hunt, Nanostructured Materials, 11, 545 (1999); doi:10.1016/S0965-9773(99)00343-8.