Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ceramic-Based Microfluidic Device for Separation of Magnetic Particles in Continuous Flow
Corresponding Author(s) : Young Joon Yoon
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
A ceramic-based microfluidic biochip for the application to separate the magnetic particles in the continuous flow was fabricated. To realize the various functions in a biochip, passive mixer, passive filter and active separator was integrated. Active separation was performed by external permanent magnet. A ceramic-based microfluidic chip was fabricated by LTCC (low temperature co-fired ceramic) process combined with photolithography. Through the addition of photosensitive polymer into LTCC slurry, it was possible to form a microchannel in a ceramic body by UV photolithography. To realize the magnetic separation under the applied magnetic field in a continuous flow, the separation chamber was designed to have multi-channel system with different channel width. To check the performance of a ceramic-based microfluidic device, microfluidic parameters were optimized considering both the hydrodynamic and magnetic force of the ceramic-based chip.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Lenshof and T. Laurell, Chem. Soc. Rev., 39, 1203 (2010); doi:10.1039/b915999c.
- N. Pamme and A. Manz, Anal. Chem., 76, 7250 (2004); doi:10.1021/ac049183o.
- C. Derec, C. Wilhelm, J. Servais and J.-C. Bacri, Microfluid. Nanofluid., 8, 123 (2010); doi:10.1007/s10404-009-0486-6.
- Z. Zhu, J.J. Lu and S. Liu, Anal. Chim. Acta, 709, 21 (2012); doi:10.1016/j.aca.2011.10.022.
- P.-A. Auroux, D. Iossifidis, D.R. Reyes and A. Manz, Anal. Chem., 74, 2637 (2002); doi:10.1021/ac020239t.
- N. Pamme, Lab Chip, 7, 1644 (2007); doi:10.1039/b712784g.
- P. Abgrall and A.-M. Gue, J. Micromech. Microeng., 17, R15 (2007); doi:10.1088/0960-1317/17/5/R01.
- L.J. Golonka, Bull. Polish Acad. Tech. Sci., 54, 221 (2006).
- K. Malecha and L.J. Golonka, Microelectron. Reliab., 48, 866 (2008); doi:10.1016/j.microrel.2008.03.013.
- J. Choi, Y.J. Yoon, Y.-S. Choi, H.T. Kim, J. Kim, J.-H. Lee and J.-h. Kim, J. Ceramic Processing Res., 12, 146 (2011).
References
A. Lenshof and T. Laurell, Chem. Soc. Rev., 39, 1203 (2010); doi:10.1039/b915999c.
N. Pamme and A. Manz, Anal. Chem., 76, 7250 (2004); doi:10.1021/ac049183o.
C. Derec, C. Wilhelm, J. Servais and J.-C. Bacri, Microfluid. Nanofluid., 8, 123 (2010); doi:10.1007/s10404-009-0486-6.
Z. Zhu, J.J. Lu and S. Liu, Anal. Chim. Acta, 709, 21 (2012); doi:10.1016/j.aca.2011.10.022.
P.-A. Auroux, D. Iossifidis, D.R. Reyes and A. Manz, Anal. Chem., 74, 2637 (2002); doi:10.1021/ac020239t.
N. Pamme, Lab Chip, 7, 1644 (2007); doi:10.1039/b712784g.
P. Abgrall and A.-M. Gue, J. Micromech. Microeng., 17, R15 (2007); doi:10.1088/0960-1317/17/5/R01.
L.J. Golonka, Bull. Polish Acad. Tech. Sci., 54, 221 (2006).
K. Malecha and L.J. Golonka, Microelectron. Reliab., 48, 866 (2008); doi:10.1016/j.microrel.2008.03.013.
J. Choi, Y.J. Yoon, Y.-S. Choi, H.T. Kim, J. Kim, J.-H. Lee and J.-h. Kim, J. Ceramic Processing Res., 12, 146 (2011).