Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Denitrifying Performance of V2O5-MoO3/TiO2-CeO2/H-Mordenite
Corresponding Author(s) : Rujun Xue
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
With MoO3 as additive, V2O5 coatings was loaded to H-mordenite zeolite-TiO2 composite carrier to prepare V2O5-MoO3/ TiO2-CeO2/HM as NOx SCR catalyst. X-Ray diffraction, N2 adsorption-desorption and NH3 temperature programmed desorption (NH3-TPD) techniques were used to characterize the structure, surface area, acidity of the catalyst. Denitration performance of the catalyst was investigated using fixed-bed micro-reactor. The effect of V2O5 content on denitrification performance was studied extensively. Experimental results show that H-mordenite zeolite is beneficial to increase the specific surface area of the TiO2 support and improve V2O5 dispersing on the carrier in a monolayer state. The catalyst with 8 % V2O5 load displays optimal denitration performance. When the V2O5 load ³ 8 % V2O5, the catalytic activity decrease. MoO3 has help to vanadium-base catalyst and the denitration performance of the V2O5/CeO2-TiO2/HM with MoO3 additive increased and NO conversion reached to 92 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O.S.G.P. Soares, J.J.M. Órfão and M.F.R. Pereira, Catal. Lett., 139, 97 (2010); doi:10.1007/s10562-010-0424-y.
- Z.G. Li, J. Ma, W.L. Wang, C.L. Wu, J.Q. Wang, C.Q. Yang and M.Q. Shen, Ind. Catal., 5, 30 (2011).
- G.S. Qi, Y.H. Wang and R.T. Yang, Catal. Lett., 121, 111 (2008); doi:10.1007/s10562-007-9306-3.
- L.F. Córdoba, G.A. Fuentes and C.M. de Correa, Micropor. Mesopor. Mater., 77, 193 (2005); doi:10.1016/j.micromeso.2004.09.003.
- M. Kobayashi and K. Miyoshi, Appl. Catal. B, 72, 253 (2007); doi:10.1016/j.apcatb.2006.11.007.
- F.S. Tang, B.L. Xu, H.H. Shi, J.H. Qiu and Y.N. Fan, J. Therm. Anal. Calorim., 1, 209 (2003).
- S.S.R. Putluru, A. Riisager and R. Fehrmann, Appl. Catal. B, 97, 333 (2010); doi:10.1016/j.apcatb.2010.04.009.
References
O.S.G.P. Soares, J.J.M. Órfão and M.F.R. Pereira, Catal. Lett., 139, 97 (2010); doi:10.1007/s10562-010-0424-y.
Z.G. Li, J. Ma, W.L. Wang, C.L. Wu, J.Q. Wang, C.Q. Yang and M.Q. Shen, Ind. Catal., 5, 30 (2011).
G.S. Qi, Y.H. Wang and R.T. Yang, Catal. Lett., 121, 111 (2008); doi:10.1007/s10562-007-9306-3.
L.F. Córdoba, G.A. Fuentes and C.M. de Correa, Micropor. Mesopor. Mater., 77, 193 (2005); doi:10.1016/j.micromeso.2004.09.003.
M. Kobayashi and K. Miyoshi, Appl. Catal. B, 72, 253 (2007); doi:10.1016/j.apcatb.2006.11.007.
F.S. Tang, B.L. Xu, H.H. Shi, J.H. Qiu and Y.N. Fan, J. Therm. Anal. Calorim., 1, 209 (2003).
S.S.R. Putluru, A. Riisager and R. Fehrmann, Appl. Catal. B, 97, 333 (2010); doi:10.1016/j.apcatb.2010.04.009.