Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Optical Property of Hierarchical Structured Porous ZnO Microplates
Corresponding Author(s) : Guoquan Shao
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Hierarchical structured porous ZnO microplates have been prepared by thermal decomposition of Zn5(CO3)2(OH)6 precursor. The products are characterized by X-ray diffraction, field-emission scanning electron microscopy, high resolution transmission electron microscopy, transmission electron microscopy, UV-visible absorption spectrum and photoluminescence spectra. Each ZnO microplate is made up of nanoparticle-based nanowires with diameters of 40-80 nm and lengths of 2-3 μm and the diameter of constituent nanoparticles ranges from 10 to 20 nm. Due to their porous hierarchical microstructures, the prepared ZnO products exhibit excellent optical properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.L. Penn and J.F. Banfield, Science, 281, 969 (1998); doi:10.1126/science.281.5379.969.
- B.X. Li and Y.F. Wang, J. Phys. Chem. C, 114, 890 (2010); doi:10.1021/jp909478q.
- M.S. Mo, S.H. Lim, Y.W. Mai, R.K. Zheng and S.P. Ringer, Adv. Mater., 20, 339 (2008); doi:10.1002/adma.200701137.
- H.X. Li, M.X. Xia, G.Z. Dai, H.C. Yu, Q.L. Zhang, A.L. Pan, T.H. Wang, Y.G. Wang and B.S. Zou, J. Phys. Chem. C, 112, 17546 (2008); doi:10.1021/jp806677q.
- S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos and H.J. Sung, Nano Lett., 11, 666 (2011); doi:10.1021/nl1037962.
- Q.P. Luo, B.X. Lei, X.Y. Yu, D.B. Kuang and C.Y. Su, J. Mater. Chem., 21, 8709 (2011); doi:10.1039/c1jm10871a.
- J. Dai, C. Xu, M. Gao, Z. Liu, Z. Shi, X. Xu, J. Guo and Z. Li, CrystEngComm, 14, 2180 (2012); doi:10.1039/c2ce06231c.
- A.J. Wang, Q.C. Liao, J.J. Feng, P.P. Zhang, A.Q. Li and J.J. Wang, Cryst. Eng. Comm., 14, 256 (2011); doi:10.1039/c1ce05830d.
- J.Y. Liu, Z. Guo, F.L. Meng, Y. Jia, T. Luo, M.Q. Li and J.H. Liu, Cryst. Growth Des., 9, 1716 (2009); doi:10.1021/cg8006298.
- D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen and T. Goto, Appl. Phys. Lett., 70, 2230 (1997); doi:10.1063/1.118824.
- X. Liu, X.H. Wu, H. Cao and R.P.H. Chang, J. Appl. Phys., 95, 3141 (2004); doi:10.1063/1.1646440.
References
R.L. Penn and J.F. Banfield, Science, 281, 969 (1998); doi:10.1126/science.281.5379.969.
B.X. Li and Y.F. Wang, J. Phys. Chem. C, 114, 890 (2010); doi:10.1021/jp909478q.
M.S. Mo, S.H. Lim, Y.W. Mai, R.K. Zheng and S.P. Ringer, Adv. Mater., 20, 339 (2008); doi:10.1002/adma.200701137.
H.X. Li, M.X. Xia, G.Z. Dai, H.C. Yu, Q.L. Zhang, A.L. Pan, T.H. Wang, Y.G. Wang and B.S. Zou, J. Phys. Chem. C, 112, 17546 (2008); doi:10.1021/jp806677q.
S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos and H.J. Sung, Nano Lett., 11, 666 (2011); doi:10.1021/nl1037962.
Q.P. Luo, B.X. Lei, X.Y. Yu, D.B. Kuang and C.Y. Su, J. Mater. Chem., 21, 8709 (2011); doi:10.1039/c1jm10871a.
J. Dai, C. Xu, M. Gao, Z. Liu, Z. Shi, X. Xu, J. Guo and Z. Li, CrystEngComm, 14, 2180 (2012); doi:10.1039/c2ce06231c.
A.J. Wang, Q.C. Liao, J.J. Feng, P.P. Zhang, A.Q. Li and J.J. Wang, Cryst. Eng. Comm., 14, 256 (2011); doi:10.1039/c1ce05830d.
J.Y. Liu, Z. Guo, F.L. Meng, Y. Jia, T. Luo, M.Q. Li and J.H. Liu, Cryst. Growth Des., 9, 1716 (2009); doi:10.1021/cg8006298.
D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen and T. Goto, Appl. Phys. Lett., 70, 2230 (1997); doi:10.1063/1.118824.
X. Liu, X.H. Wu, H. Cao and R.P.H. Chang, J. Appl. Phys., 95, 3141 (2004); doi:10.1063/1.1646440.