Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Leaf-Like CuO Nanostructures
Corresponding Author(s) : Chonghai Deng
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Using copper chloride and triethylamine as starting reactants, uniform two dimensional (2D) leaf-like CuO nanostructures have been successfully prepared via a convenient microwave-assisted chemical route. The synthesized products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and UV-visible absorption spectrum. The widths of the central parts for shuttle-like CuO nanoleaves are estimated to be 100-160 nm and the lengths are 0.8-1.4 μm. The growth process of leaf-like CuO nanostructures was investigated in detail. The band-gap energy of as-prepared CuO nanoleaves was estimated to be 2.56 eV from the optical absorption spectrum, showing a good quantum size effect.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Maruyama, Sol. Energy Mater. Sol. Cells, 56, 85 (1998); doi:10.1016/S0927-0248(98)00128-7.
- J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura and N. Yamazoe, Sens. Actuators B, 49, 121 (1998); doi:10.1016/S0925-4005(98)00144-0.
- X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu and D.Y. Song, J. Phys. Chem. B, 108, 5547 (2004); doi:10.1021/jp037075k.
- J.B. Reitz and E.I. Solomon, J. Am. Chem. Soc., 120, 11467 (1998); doi:10.1021/ja981579s.
- J. Hodges, Y. Sidis, P. Bourges, I. Mirebeau, M. Hennion and X. Chaud, Phys. Rev. B, 66, 020501 (2002); doi:10.1103/PhysRevB.66.020501.
- Y. Li, P.Y. Kuai, P.P. Huo and C.J. Liu, Mater. Lett., 63, 188 (2009); doi:10.1016/j.matlet.2008.09.043.
- M. Kong, W.X. Zhang, Z.H. Yang, S.Y. Weng and Z.X. Chen, Appl. Surf. Sci., 258, 1317 (2011); doi:10.1016/j.apsusc.2011.08.127.
- Y.L. Yu and J.Y. Zhang, Mater. Lett., 63, 1840 (2009); doi:10.1016/j.matlet.2009.05.061.
- D. Keyson, D.P. Volanti, L.S. Cavalcante, A.Z. Simões, J.A. Varela and E. Longo, Mater. Res. Bull., 43, 771 (2008); doi:10.1016/j.materresbull.2007.03.019.
- Q.T. Pan, K. Huang, S.B. Ni, F. Yang, S.M. Lin and D.Y. He, J. Alloys Comp., 484, 322 (2009); doi:10.1016/j.jallcom.2009.04.090.
- C.H. Deng, H.M. Hu, X.Q. Ge, C.L. Han, D.F. Zhao and G.Q. Shao, Ultrason. Sonochem., 18, 932 (2011); doi:10.1016/j.ultsonch.2011.01.007.
- L.J. Wang, Q. Zhou, G.L. Zhang, Y.J. Liang, B.S. Wang, W.W. Zhang, B. Lei and W.Z. Wang, Mater. Lett., 74, 217 (2012); doi:10.1016/j.matlet.2012.01.123.
References
T. Maruyama, Sol. Energy Mater. Sol. Cells, 56, 85 (1998); doi:10.1016/S0927-0248(98)00128-7.
J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura and N. Yamazoe, Sens. Actuators B, 49, 121 (1998); doi:10.1016/S0925-4005(98)00144-0.
X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu and D.Y. Song, J. Phys. Chem. B, 108, 5547 (2004); doi:10.1021/jp037075k.
J.B. Reitz and E.I. Solomon, J. Am. Chem. Soc., 120, 11467 (1998); doi:10.1021/ja981579s.
J. Hodges, Y. Sidis, P. Bourges, I. Mirebeau, M. Hennion and X. Chaud, Phys. Rev. B, 66, 020501 (2002); doi:10.1103/PhysRevB.66.020501.
Y. Li, P.Y. Kuai, P.P. Huo and C.J. Liu, Mater. Lett., 63, 188 (2009); doi:10.1016/j.matlet.2008.09.043.
M. Kong, W.X. Zhang, Z.H. Yang, S.Y. Weng and Z.X. Chen, Appl. Surf. Sci., 258, 1317 (2011); doi:10.1016/j.apsusc.2011.08.127.
Y.L. Yu and J.Y. Zhang, Mater. Lett., 63, 1840 (2009); doi:10.1016/j.matlet.2009.05.061.
D. Keyson, D.P. Volanti, L.S. Cavalcante, A.Z. Simões, J.A. Varela and E. Longo, Mater. Res. Bull., 43, 771 (2008); doi:10.1016/j.materresbull.2007.03.019.
Q.T. Pan, K. Huang, S.B. Ni, F. Yang, S.M. Lin and D.Y. He, J. Alloys Comp., 484, 322 (2009); doi:10.1016/j.jallcom.2009.04.090.
C.H. Deng, H.M. Hu, X.Q. Ge, C.L. Han, D.F. Zhao and G.Q. Shao, Ultrason. Sonochem., 18, 932 (2011); doi:10.1016/j.ultsonch.2011.01.007.
L.J. Wang, Q. Zhou, G.L. Zhang, Y.J. Liang, B.S. Wang, W.W. Zhang, B. Lei and W.Z. Wang, Mater. Lett., 74, 217 (2012); doi:10.1016/j.matlet.2012.01.123.