Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalysis of Vaporous Organic Pollutants Using Bead-Shaped Titania Grown on Carbon Fiber
Corresponding Author(s) : Wan-Kuen Jo
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
This study was performed to examine the photocatalytic activities of titanium dioxide (TiO2) grown on carbon fiber sheet (TiO2-CFS) for purification of air-phase benzene, toluene, ethyl benzene and o-xylene (BTEX) under different experimental conditions. The SEM images displayed that TiO2 could be embedded into the surface of a support CFS by applying a simple hydrothermal technique followed by a calcination process. The XRD results demonstrated that TiO2 impregnated into CFSs had a photocatalytic function similar to that of TiO2. The removal efficiencies of BTEX determined via the TiO2-CFSs were all higher than those determined via uncalcined CFS. In addition, the removal efficiencies of BTEX determined via three TiO2-CFSs with high amount of TiO2 imbedded into CFSs were all higher than those determined via uncalcined or calcined CFS. Meanwhile, the removal efficiencies of ethyl benzene and o-xylene determined via the TiO2-CFS with a low amount of embedded TiO2 were lower than those determined via calcined CFS. As the amount of tetrabutyl titanate used for the preparation of TiO2-CFSs increased from 2.5 to 6.0 mL, the average removal efficiencies of BTEX increased from 19 to 68 %, 34 to 75 %, 35 to 83 % and 46 to 87 %, respectively. The conditions of high amount of Ti precursor within the range used in the present study, low air flow rates conditions were preferred for decomposition of airborne BTEX. Overall, TiO2-CFSs could be applied effectively for removal of environmental pollutants, when the amount of Ti precursor was properly chosen for their preparation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- IARC (International Agency for Research on Cancer), Monographs on the evaluation of the carcinogenic risks of chemicals to man, WHO, Geneva (2004).
- A.S. Revilla, C.R. Pestana, G.L. Pardo-Andreu, A.C. Santos, S.A. Uyemura, M.E. Gonzales and C. Curti, Toxicol. In Vitro, 21, 782 (2007); doi:10.1016/j.tiv.2007.01.012.
- T. Ohura, T. Amagai, X. Shen, S. Li, P. Zhang and L. Zhu, Atmos. Environ., 43, 6352 (2009); doi:10.1016/j.atmosenv.2009.09.022.
- U. Schlink, A. Thiem, T. Kohajda, M. Richter and K. Strebel, Sci. Total Environ., 408, 3840 (2010); doi:10.1016/j.scitotenv.2009.12.002.
- C. Jia, S. Batterman and C. Godwin, Atmos. Environ., 42, 2101 (2008); doi:10.1016/j.atmosenv.2007.11.047.
- D. Pérez-Rial, P. López-Mahía and R. Tauler, Atmos. Environ., 44, 5122 (2010); doi:10.1016/j.atmosenv.2010.09.005.
- H. Choi, E. Stathatos and D.D. Dionysiou, Desalination, 202, 199 (2007); doi:10.1016/j.desal.2005.12.055.
- C. Bougheloum and A. Messalhi, Phys. Proc., 2, 1055 (2009); doi:10.1016/j.phpro.2009.11.062.
- A.H. Aïssa, E. Puzenat, A. Plassais, J.-M. Herrmann, C. Haehnel and C. Guillard, Appl. Catal. B, 107, 1 (2011); doi:10.1016/j.apcatb.2011.06.012.
- W.K. Jo and H.J. Kang, Appl. Surf. Sci., 259, 657 (2012); doi:10.1016/j.apsusc.2012.07.093.
- C.-Y. Lu and M.-Y. Wey, Fuel Process. Technol., 88, 557 (2007); doi:10.1016/j.fuproc.2007.01.004.
- V. Augugliaro, M. Litter, L. Palmisano and J. Soria, J. Photochem. Photobiol. Chem., 7, 127 (2006); doi:10.1016/j.jphotochemrev.2006.12.001.
- M.A. Henderson, Surf. Sci. Rep., 66, 185 (2011); doi:10.1016/j.surfrep.2011.01.001.
- C.H. Ao and S.C. Lee, Chem. Eng. Sci., 60, 103 (2005); doi:10.1016/j.ces.2004.01.073.
- J. Matos, E. García-López, L. Palmisano, A. García and G. Marcì, Appl. Catal. B, 99, 170 (2010); doi:10.1016/j.apcatb.2010.06.014.
- W.K. Jo, S.H. Shin and E.S. Hwang, J. Hazard. Mater., 191, 234 (2011); doi:10.1016/j.jhazmat.2011.04.069.
- H. Yamashita, S. Nishio, I. Katayama, N. Nishiyama and H. Fujii, Catal. Today, 111, 254 (2006); doi:10.1016/j.cattod.2005.10.061.
- S.W. Verbruggen, S. Ribbens, T. Tytgat, B. Hauchecorne, M. Smits, V. Meynen, P. Cool, J.A. Martens and S. Lenaerts, Chem. Eng. J., 174, 318 (2011); doi:10.1016/j.cej.2011.09.038.
- H.H. Chun and W.K. Jo, Chin. J. Catal., 34, 1256 (2013); doi:10.1016/S1872-2067(12)60549-X.
- P. Chen, L. Gu, X. Xue, M. Li and X. Cao, Chem. Commun., 46, 5906 (2010); doi:10.1039/c0cc00869a.
- N.K. Dey, M.J. Kim, K.-D. Kim, H.O. Seo, D. Kim, Y.D. Kim, D.C. Lim and K.H. Lee, J. Mol. Catal. A, 337, 33 (2011); doi:10.1016/j.molcata.2011.01.010.
- W. Guo, F. Zhang, C. Lin and Z.L. Wang, Adv. Mater., 24, 4761 (2012); doi:10.1002/adma.201201075.
- B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.-Q. Wang, W. Yan and H. Fu, J. Phys. Chem.C, 115, 23718 (2011); doi:10.1021/jp207624x.
- R. Leary and A. Westwood, Carbon, 49, 741 (2011); doi:10.1016/j.carbon.2010.10.010.
- J. Jeong, K. Sekiguchi, W. Lee and K. Sakamoto, J. Photochem. Photobiol. A, 169, 279 (2005); doi:10.1016/j.jphotochem.2004.07.014.
- Q.L. Yu and H.J.H. Brouwers, Appl. Catal. B, 92, 454 (2009); doi:10.1016/j.apcatb.2009.09.004.
References
IARC (International Agency for Research on Cancer), Monographs on the evaluation of the carcinogenic risks of chemicals to man, WHO, Geneva (2004).
A.S. Revilla, C.R. Pestana, G.L. Pardo-Andreu, A.C. Santos, S.A. Uyemura, M.E. Gonzales and C. Curti, Toxicol. In Vitro, 21, 782 (2007); doi:10.1016/j.tiv.2007.01.012.
T. Ohura, T. Amagai, X. Shen, S. Li, P. Zhang and L. Zhu, Atmos. Environ., 43, 6352 (2009); doi:10.1016/j.atmosenv.2009.09.022.
U. Schlink, A. Thiem, T. Kohajda, M. Richter and K. Strebel, Sci. Total Environ., 408, 3840 (2010); doi:10.1016/j.scitotenv.2009.12.002.
C. Jia, S. Batterman and C. Godwin, Atmos. Environ., 42, 2101 (2008); doi:10.1016/j.atmosenv.2007.11.047.
D. Pérez-Rial, P. López-Mahía and R. Tauler, Atmos. Environ., 44, 5122 (2010); doi:10.1016/j.atmosenv.2010.09.005.
H. Choi, E. Stathatos and D.D. Dionysiou, Desalination, 202, 199 (2007); doi:10.1016/j.desal.2005.12.055.
C. Bougheloum and A. Messalhi, Phys. Proc., 2, 1055 (2009); doi:10.1016/j.phpro.2009.11.062.
A.H. Aïssa, E. Puzenat, A. Plassais, J.-M. Herrmann, C. Haehnel and C. Guillard, Appl. Catal. B, 107, 1 (2011); doi:10.1016/j.apcatb.2011.06.012.
W.K. Jo and H.J. Kang, Appl. Surf. Sci., 259, 657 (2012); doi:10.1016/j.apsusc.2012.07.093.
C.-Y. Lu and M.-Y. Wey, Fuel Process. Technol., 88, 557 (2007); doi:10.1016/j.fuproc.2007.01.004.
V. Augugliaro, M. Litter, L. Palmisano and J. Soria, J. Photochem. Photobiol. Chem., 7, 127 (2006); doi:10.1016/j.jphotochemrev.2006.12.001.
M.A. Henderson, Surf. Sci. Rep., 66, 185 (2011); doi:10.1016/j.surfrep.2011.01.001.
C.H. Ao and S.C. Lee, Chem. Eng. Sci., 60, 103 (2005); doi:10.1016/j.ces.2004.01.073.
J. Matos, E. García-López, L. Palmisano, A. García and G. Marcì, Appl. Catal. B, 99, 170 (2010); doi:10.1016/j.apcatb.2010.06.014.
W.K. Jo, S.H. Shin and E.S. Hwang, J. Hazard. Mater., 191, 234 (2011); doi:10.1016/j.jhazmat.2011.04.069.
H. Yamashita, S. Nishio, I. Katayama, N. Nishiyama and H. Fujii, Catal. Today, 111, 254 (2006); doi:10.1016/j.cattod.2005.10.061.
S.W. Verbruggen, S. Ribbens, T. Tytgat, B. Hauchecorne, M. Smits, V. Meynen, P. Cool, J.A. Martens and S. Lenaerts, Chem. Eng. J., 174, 318 (2011); doi:10.1016/j.cej.2011.09.038.
H.H. Chun and W.K. Jo, Chin. J. Catal., 34, 1256 (2013); doi:10.1016/S1872-2067(12)60549-X.
P. Chen, L. Gu, X. Xue, M. Li and X. Cao, Chem. Commun., 46, 5906 (2010); doi:10.1039/c0cc00869a.
N.K. Dey, M.J. Kim, K.-D. Kim, H.O. Seo, D. Kim, Y.D. Kim, D.C. Lim and K.H. Lee, J. Mol. Catal. A, 337, 33 (2011); doi:10.1016/j.molcata.2011.01.010.
W. Guo, F. Zhang, C. Lin and Z.L. Wang, Adv. Mater., 24, 4761 (2012); doi:10.1002/adma.201201075.
B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.-Q. Wang, W. Yan and H. Fu, J. Phys. Chem.C, 115, 23718 (2011); doi:10.1021/jp207624x.
R. Leary and A. Westwood, Carbon, 49, 741 (2011); doi:10.1016/j.carbon.2010.10.010.
J. Jeong, K. Sekiguchi, W. Lee and K. Sakamoto, J. Photochem. Photobiol. A, 169, 279 (2005); doi:10.1016/j.jphotochem.2004.07.014.
Q.L. Yu and H.J.H. Brouwers, Appl. Catal. B, 92, 454 (2009); doi:10.1016/j.apcatb.2009.09.004.