Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Formation of Hybrid Magnetic Films Composed of Fe3O4 and Epoxy Resin by Inkjet Printing
Corresponding Author(s) : Young Joon Yoon
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Hybrid magnetic films composed of Fe3O4 powders and epoxy resin were fabricated by inkjet printing process. Through the optimization of Fe3O4 ink and inkjet parameters, the Fe3O4 films were formed with the thickness from 5 to 100 μm. The film thickness could be adjusted by varying the solid content of Fe3O4 ink and repeating the number of inkjet printing of the Fe3O4 ink. To obtain a rigid magnetic film, epoxy resin was infiltrated into the Fe3O4 film and subsequently cured at 250 ºC. It was the confirmed that highly-packed Fe3O4 hybrid film could be formed without any macro-voids after epoxy resin infiltration. The magnetic permeability and loss of hybrid Fe3O4 films with different film thickness were measured and those values at 13.56 MHz were compared. Magnetic properties of inkjet-printed Fe3O4 hybrid film was improved as the film thickness increased. Magnetic permeability and loss of Fe3O4 hybrid film with 30 μm thickness were 9.9 and 5.9, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Kasama, R.E. Dunin-Borkowski and W. Eerenstein, Phys. Rev. B, 73, 104432 (2006); doi:10.1103/PhysRevB.73.104432.
- A. Yanase and N. Hamada, J. Phys. Soc. Jpn., 68, 1607 (1999); doi:10.1143/JPSJ.68.1607.
- Y.S. Dedkov, U. Rudiger and G. Guntherodt, Phys. Rev. B, 65, 064417 (2002); doi:10.1103/PhysRevB.65.064417.
- M. Izaki and O. Shinoura, Adv. Mater., 13, 142 (2001); doi:10.1002/1521-4095(200101)13:2<142::AID-ADMA142>3.0.CO;2-9.
- J. Gass, P. Poddar, J. Almand, S. Srinath and H. Srikanth, Adv. Funct. Mater., 16, 71 (2006); doi:10.1002/adfm.200500335.
- D. Kim, Y. Jeong, K. Song, S.-K. Park, G. Cao and J. Moon, Langmuir, 25, 11149 (2009); doi:10.1021/la901436p.
- A. Kamyshny, M. Ben-Moshe, S. Aviezer and S. Magdassi, Macromol. Rapid Commun., 26, 281 (2005); doi:10.1002/marc.200400522.
- C.W. Sele, T. von Werne, R.H. Friend and H. Sirringhaus, Adv. Mater., 17, 997 (2005); doi:10.1002/adma.200401285.
- M. Singh, H.M. Haverinen, P. Dhagat and G.E. Jabbour, Adv. Mater., 22, 673 (2010); doi:10.1002/adma.200901141.
- M.P. Paraye and S.V. Kulkarni, Near Field Communication, Proceedings of the National conference. NCNTE-2012, pp. 22-25 (2012).
- C. Kantner and J. Scharinger. The benefit of using SIM application toolkit in the context of near field communication applications. IEEE. ICMB 2007.
References
T. Kasama, R.E. Dunin-Borkowski and W. Eerenstein, Phys. Rev. B, 73, 104432 (2006); doi:10.1103/PhysRevB.73.104432.
A. Yanase and N. Hamada, J. Phys. Soc. Jpn., 68, 1607 (1999); doi:10.1143/JPSJ.68.1607.
Y.S. Dedkov, U. Rudiger and G. Guntherodt, Phys. Rev. B, 65, 064417 (2002); doi:10.1103/PhysRevB.65.064417.
M. Izaki and O. Shinoura, Adv. Mater., 13, 142 (2001); doi:10.1002/1521-4095(200101)13:2<142::AID-ADMA142>3.0.CO;2-9.
J. Gass, P. Poddar, J. Almand, S. Srinath and H. Srikanth, Adv. Funct. Mater., 16, 71 (2006); doi:10.1002/adfm.200500335.
D. Kim, Y. Jeong, K. Song, S.-K. Park, G. Cao and J. Moon, Langmuir, 25, 11149 (2009); doi:10.1021/la901436p.
A. Kamyshny, M. Ben-Moshe, S. Aviezer and S. Magdassi, Macromol. Rapid Commun., 26, 281 (2005); doi:10.1002/marc.200400522.
C.W. Sele, T. von Werne, R.H. Friend and H. Sirringhaus, Adv. Mater., 17, 997 (2005); doi:10.1002/adma.200401285.
M. Singh, H.M. Haverinen, P. Dhagat and G.E. Jabbour, Adv. Mater., 22, 673 (2010); doi:10.1002/adma.200901141.
M.P. Paraye and S.V. Kulkarni, Near Field Communication, Proceedings of the National conference. NCNTE-2012, pp. 22-25 (2012).
C. Kantner and J. Scharinger. The benefit of using SIM application toolkit in the context of near field communication applications. IEEE. ICMB 2007.