Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermal Stability and Thermal Degradation Reaction Kinetics of 4,4'-Diphenylmethane Diisocyanatetrimer
Corresponding Author(s) : Jin Liu
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
The trimer of 4,4'-diphenylmethane diisocyanate (MDI) is synthesized using 2,4,6-tris(dimethylaminomethyl) phenol (DMP-30) as catalyst. The thermal stability of MDI and its trimer and thermal degradation reaction kinetics for MDI trimer are studied by thermo gravimetric analyzer, respectively. The properties and structure of the trimer of MDI are characterized by X-ray diffraction, Fourier transform infrared spectroscopy and TGA. The activation energy of degradation reaction of the trimer was obtained by Ozawa method. The results show that there are two stages of the trimer during thermal degradation process and the apparent activation energy of the first and the second stage are 200.99 and 259.94 kJ/mol, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu and Y. Du, Surf. Coat. Technol., 200, 5170 (2006); doi:10.1016/j.surfcoat.2005.04.039.
- L.P. Alves, V. Pilla, D.O.A. Murgo and E. Munin, J. Dent., 38, 149 (2010); doi:10.1016/j.jdent.2009.09.014.
- M. Kuppayee, G.K. Vanathi Nachiyar and V. Ramasamy, Mater. Sci. Semicond. Process., 15, 136 (2012); doi:10.1016/j.mssp.2011.09.006.
- M. Dai Prè, I. Morrow, D.J. Martin, M. Mos, A. Del Negro, S. Padovani and A. Martucci, Mater. Chem. Phys., 139, 531 (2013); doi:10.1016/j.matchemphys.2013.02.003.
- H. Althues, R. Palkovits, A. Rumplecker, P. Simon, W. Sigle, M. Bredol, U. Kynast and S. Kaskel, Chem. Mater., 18, 1068 (2006); doi:10.1021/cm0477422.
- S. Agrawal, D. Patidar and N.S. Saxena, Phase Transit., 84, 888 (2011); doi:10.1080/01411594.2011.563152.
- L. Guo, S. Chen and L. Chen, Colloid Polym. Sci., 285, 1593 (2007); doi:10.1007/s00396-007-1730-9.
- B.Y. Chen, J. Liu, S.C. Fu, W. Zhang and J.J. Wang, New Chem. Mater., 92 (2013).
References
W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu and Y. Du, Surf. Coat. Technol., 200, 5170 (2006); doi:10.1016/j.surfcoat.2005.04.039.
L.P. Alves, V. Pilla, D.O.A. Murgo and E. Munin, J. Dent., 38, 149 (2010); doi:10.1016/j.jdent.2009.09.014.
M. Kuppayee, G.K. Vanathi Nachiyar and V. Ramasamy, Mater. Sci. Semicond. Process., 15, 136 (2012); doi:10.1016/j.mssp.2011.09.006.
M. Dai Prè, I. Morrow, D.J. Martin, M. Mos, A. Del Negro, S. Padovani and A. Martucci, Mater. Chem. Phys., 139, 531 (2013); doi:10.1016/j.matchemphys.2013.02.003.
H. Althues, R. Palkovits, A. Rumplecker, P. Simon, W. Sigle, M. Bredol, U. Kynast and S. Kaskel, Chem. Mater., 18, 1068 (2006); doi:10.1021/cm0477422.
S. Agrawal, D. Patidar and N.S. Saxena, Phase Transit., 84, 888 (2011); doi:10.1080/01411594.2011.563152.
L. Guo, S. Chen and L. Chen, Colloid Polym. Sci., 285, 1593 (2007); doi:10.1007/s00396-007-1730-9.
B.Y. Chen, J. Liu, S.C. Fu, W. Zhang and J.J. Wang, New Chem. Mater., 92 (2013).