Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Establishing Performance of Prediction Models and Optimizing Preparation Parameters of Sintered Product Based on Response Surface Methodology
Corresponding Author(s) : Aiguo Wang
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
Sintering temperature, specific surface area of coal gangue and ratio of SiO2/Al2O3 were selected as variables and volume shrinkage ratio (a), apparent density (r), vacuum water absorption (w) and compressive strength (s) of sintered brick were chosen as response values. Response surface methodology (RSM) was employed to design experiment and analyze results and the quadratic regression models between properties of sintered brick and variables were established and the interaction effects of variables were also discussed, the technical parameters for the aim to prepare excellent sintered brick were optimized. The results indicated that the quadratic regression models of a, r and w were fitted well and could be used to analyze and to predict the properties of sintered brick. Moreover, the interactions of temperature-specific surface area and temperature-Si/Al were significant for properties of sintered brick. The technical parameters for preparation of excellent sintered brick were determined by RSM, which were of 1225-1250 ºC in sintering temperature, of around 600-640 m2 kg-1 in specific surface area of coal gangue and ratio of Si/Al = 2.5-2.6.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.L. Xu, W. Guo, T. Wang and N.R. Yang, Constr. Build. Mater., 19, 243 (2005); doi: 10.1016/j.conbuildmat.2004.05.017.
- L.Y. Zhang, Construct. Build. Mater., 47, 643 (2013); doi:10.1016/j.conbuildmat.2013.05.043.
- W.J. Song, H.L. Xu, H. Guo, H.X. Lu, W.B. Cao, R. Zhang, Y.N. Wu and Z.H. Zhang, China Ceramics, 47, 8 (2011).
- K.-Y. Chiang, K.-L. Chien and S.-J. Hwang, J. Hazard. Mater., 159, 499 (2008); doi:10.1016/j.jhazmat.2008.02.046.
- J.G. Song and B.L. Wu, Mater. Sci. Technol., 15, 569 (2007).
- Q.J. Ding, X.L. Huang, H. Sun and K. Yang, Adv. Mater. Res., 168-170, 1625 (2010); doi:10.4028/www.scientific.net/AMR.168-170.1625.
- N.U. Kockal and T. Ozturan, Mater. Des., 32, 3586 (2011); doi:10.1016/j.matdes.2011.02.028.
- S. Mannan, A. Fakhru’l-Razi and M.Z. Alam, J. Environ. Sci. (China), 19, 23 (2007); doi:10.1016/S1001-0742(07)60004-7.
References
L.L. Xu, W. Guo, T. Wang and N.R. Yang, Constr. Build. Mater., 19, 243 (2005); doi: 10.1016/j.conbuildmat.2004.05.017.
L.Y. Zhang, Construct. Build. Mater., 47, 643 (2013); doi:10.1016/j.conbuildmat.2013.05.043.
W.J. Song, H.L. Xu, H. Guo, H.X. Lu, W.B. Cao, R. Zhang, Y.N. Wu and Z.H. Zhang, China Ceramics, 47, 8 (2011).
K.-Y. Chiang, K.-L. Chien and S.-J. Hwang, J. Hazard. Mater., 159, 499 (2008); doi:10.1016/j.jhazmat.2008.02.046.
J.G. Song and B.L. Wu, Mater. Sci. Technol., 15, 569 (2007).
Q.J. Ding, X.L. Huang, H. Sun and K. Yang, Adv. Mater. Res., 168-170, 1625 (2010); doi:10.4028/www.scientific.net/AMR.168-170.1625.
N.U. Kockal and T. Ozturan, Mater. Des., 32, 3586 (2011); doi:10.1016/j.matdes.2011.02.028.
S. Mannan, A. Fakhru’l-Razi and M.Z. Alam, J. Environ. Sci. (China), 19, 23 (2007); doi:10.1016/S1001-0742(07)60004-7.