Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of MoOx (x = 2, 3) Crystallites Influenced by Hydrochloric Acid
Corresponding Author(s) : Hanmei Hu
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
In this work, one-pot hydrothermal route has been presented to synthesize 3D MoO2 nanoplate-based microspheres and 1D MoO3 nanobelts and nanowires. The products are characterized by X-ray diffraction, field-emission scanning electron microscopy and UV-visible absorption spectrum. The experimental results reveal that the dosage of hydrochloric acid seriously influences the phase and morphology of molybdenum oxides. The optical properties of the synthesized 3D MoO2 nanoplate-based microspheres and 1D MoO3 nanobelts and nanowires are studied through the UV-visible absorption spectra.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.J. Auborn and Y.L. Barberio, J. Electrochem. Soc., 134, 638 (1987); doi:10.1149/1.2100521.
- A. Katrib, D. Mey and G. Maire, Catal. Today, 65, 179 (2001); doi:10.1016/S0920-5861(00)00580-0.
- E. Comini, L. Yubao, Y. Brando and G. Sberveglieri, Chem. Phys. Lett., 407, 368 (2005); doi:10.1016/j.cplett.2005.03.116.
- J.N. Yao, K. Hashimoto and A. Fujishima, Nature, 355, 624 (1992); doi:10.1038/355624a0.
- H.X. Zhang, Y.F. Li, Z.S. Hong and M.D. Wei, Mater. Lett., 79, 148 (2012); doi:10.1016/j.matlet.2012.03.105.
- Z.Y. Wang, S. Madhavi and X.W. Lou, J. Phys. Chem. C, 116, 12508 (2012); doi:10.1021/jp304216z.
- J. Rajeswari, P.S. Kishore, B. Viswanathan and T.K. Varadarajan, Electrochem. Commun., 11, 572 (2009); doi:10.1016/j.elecom.2008.12.050.
- J. Zhou, N.S. Xu, S.Z. Deng, J. Chen and J.C. She, Chem. Phys. Lett., 382, 443 (2003); doi:10.1016/j.cplett.2003.10.002.
- W. Merchan-Merchan, A.V. Saveliev and A.M. Taylor, Micron, 40, 821 (2009); doi:10.1016/j.micron.2009.07.002.
- Y.Z. Lei, J.C. Hu, H.W. Liu and J.L. Li, Mater. Lett., 68, 82 (2012); doi:10.1016/j.matlet.2011.10.043.
- X.W. Lou and H.C. Zeng, Chem. Mater., 14, 4781 (2002); doi:10.1021/cm0206237.
- C.V. Krishnan, J. Chen, C. Burger and B. Chu, J. Phys. Chem. B, 110, 20182 (2006); doi:10.1021/jp063156f.
- Z.Q. Wang, H.F. Wang, C. Yang and J.H. Wu, Mater. Lett., 64, 2170 (2010); doi:10.1016/j.matlet.2010.07.035.
- L.L. Cai, P.M. Rao and X.L. Zheng, Nano Lett., 11, 872 (2011); doi:10.1021/nl104270u.
References
J.J. Auborn and Y.L. Barberio, J. Electrochem. Soc., 134, 638 (1987); doi:10.1149/1.2100521.
A. Katrib, D. Mey and G. Maire, Catal. Today, 65, 179 (2001); doi:10.1016/S0920-5861(00)00580-0.
E. Comini, L. Yubao, Y. Brando and G. Sberveglieri, Chem. Phys. Lett., 407, 368 (2005); doi:10.1016/j.cplett.2005.03.116.
J.N. Yao, K. Hashimoto and A. Fujishima, Nature, 355, 624 (1992); doi:10.1038/355624a0.
H.X. Zhang, Y.F. Li, Z.S. Hong and M.D. Wei, Mater. Lett., 79, 148 (2012); doi:10.1016/j.matlet.2012.03.105.
Z.Y. Wang, S. Madhavi and X.W. Lou, J. Phys. Chem. C, 116, 12508 (2012); doi:10.1021/jp304216z.
J. Rajeswari, P.S. Kishore, B. Viswanathan and T.K. Varadarajan, Electrochem. Commun., 11, 572 (2009); doi:10.1016/j.elecom.2008.12.050.
J. Zhou, N.S. Xu, S.Z. Deng, J. Chen and J.C. She, Chem. Phys. Lett., 382, 443 (2003); doi:10.1016/j.cplett.2003.10.002.
W. Merchan-Merchan, A.V. Saveliev and A.M. Taylor, Micron, 40, 821 (2009); doi:10.1016/j.micron.2009.07.002.
Y.Z. Lei, J.C. Hu, H.W. Liu and J.L. Li, Mater. Lett., 68, 82 (2012); doi:10.1016/j.matlet.2011.10.043.
X.W. Lou and H.C. Zeng, Chem. Mater., 14, 4781 (2002); doi:10.1021/cm0206237.
C.V. Krishnan, J. Chen, C. Burger and B. Chu, J. Phys. Chem. B, 110, 20182 (2006); doi:10.1021/jp063156f.
Z.Q. Wang, H.F. Wang, C. Yang and J.H. Wu, Mater. Lett., 64, 2170 (2010); doi:10.1016/j.matlet.2010.07.035.
L.L. Cai, P.M. Rao and X.L. Zheng, Nano Lett., 11, 872 (2011); doi:10.1021/nl104270u.