Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Low-Power Upconversion in Anthracene Derivatives Doped with Pd(II) Tetraphenylporphyrin
Corresponding Author(s) : Zuo-Qin Liang
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
Selective low energy excitation of Pd(II) tetraphenylporphyrin in the presence of anthracene and anthracene-2-carboxylic acid, respectively, can yield easily visualized upconversion fluorescence at low excitation power. Anthracene-2-carboxylic acid shows about a two-fold increase in the upconversion quantum yield, relative to anthracene under the identical conditions. The higher fluorescence quantum of anthracene-2-carboxylic acid plays a crucial role in its effective upconversion fluorescence.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, R.G. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips and T.C. Schmidt, Energy Environ. Sci., 5, 6953 (2012); doi:10.1039/c2ee21136j.
- R.S. Khnayzer, J. Blumhoff, J.A. Harrington, A. Haefele, F. Deng and F.N. Castellano, Chem. Commun., 48, 209 (2011); doi:10.1039/c1cc16015j.
- Q. Liu, T. Yang, W. Feng and F. Li, J. Am. Chem. Soc., 134, 5390 (2012); doi:10.1021/ja3003638.
- A. Karotki, M. Khurana, J.R. Lepock and B.C. Wilson, Photochem. Photobiol., 82, 443 (2006); doi:10.1562/2005-08-24-RA-657.
- G.S. He, P.P. Markowicz, T.-C. Lin and P.N. Prasad, Nature, 415, 767 (2002); doi:10.1038/415767a.
- X.M. Wang, F. Jin, Z.G. Chen, S.Q. Liu, X.H. Wang, X.M. Duan, X.T. Tao and M.H. Jiang, J. Phys. Chem. C, 115, 776 (2011); doi:10.1021/jp1081005.
- X.Y. Huang, S.Y. Han, W. Huang and X.G. Liu, Chem. Soc. Rev., 42, 173 (2013); doi: 10.1039/C2CS35288E.
- S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda and G. Wegner, Phys. Rev. Lett., 97, 143903 (2006); doi:10.1103/PhysRevLett.97.143903.
- (a) A. Monguzzi, R. Tubino and F. Meinardi, Phys. Rev. B, 77, 155122 (2008); doi:10.1103/PhysRevB.77.155122.; (b) T.N. Singh-Rachford and F.N. Castellano, Inorg. Chem., 48, 2541 (2009); doi:10.1021/ic802114d.
- (a) V. Yakutkin, S. Aleshchenkov, S. Chernov, T. Miteva, G. Nelles, A. Cheprakov and S. Baluschev, Chem. Eur. J., 14, 9846 (2008); doi:10.1002/chem.200801305.; (b) S. Baluschev, J. Jacob, Y.S. Avlasevich, P.E. Keivanidis, T. Miteva, A. Yasuda, G. Nelles, A.C. Grimsdale, K. Müllen and G. Wegner, Chem. Phys. Chem., 6, 1250 (2005); doi:10.1002/cphc.200500098.; (c) Y.Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, R.G.C.R. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips and T.W. Schmidt, Energy Environ. Sci., 5, 6953 (2012); doi:10.1039/c2ee21136j.
- (a) T.N. Singh-Rachford, A. Nayak, M.L. Muro-Small, S. Goeb, M.J. Therien and F.N. Castellano, J. Am. Chem. Soc., 132, 14203 (2010); doi:10.1021/ja105510k.; (b) S.K. Sugunan, U. Tripathy, S.M.K. Brunet, M.F. Paige and R.P. Steer, J. Phys. Chem. A, 113, 8548 (2009); doi:10.1021/jp9034776.
- C.E. Mccusker, F.N. Castellano, Chem. Commum., 49, 3537 (2013); doi:10.1039/c3cc40778k.
- (a) R.R. Islangulov, D.V. Kozlov and F.N. Castellano, Chem. Commun., 30, 3776 (2005); doi:10.1039/b506575e.; (b) W.H. Wu, S.M. Ji, W.T. Wu, J.Y. Shao, H.M. Guo, T.D. James and J.Z. Zhao, Chem. Eur. J., 18, 4953 (2012); doi:10.1002/chem.201101377.; (c) G. Bergamini, P. Ceroni, P. Fabbrizi and S. Cicchi, Chem. Commun., 47, 12780 (2011); doi:10.1039/c1cc16000a.
- L.H. Ma, H.M. Guo, Q.T. Li, S. Guo and J.Z. Zhao, Dalton Trans., 41, 10680 (2012); doi:10.1039/c2dt30955f.
- (a) Z.Q. Liang, B. Sun, C.Q. Ye, X.M. Wang, X.T. Tao, Q.H. Wang, P. Ding, B. Wang, J.J. Wang, Chem. Phys. Chem., 14, 3517 (2013); doi:10.1002/cphc.201300571;; (b) T.N. Singh-Rachford, A. Haefele, R. Ziessel and F.N. Castellano, J. Am. Chem. Soc., 130, 16164 (2008); doi:10.1021/ja807056a.; (c) A. Turshatov, D. Busko, Y. Avlasevich, T. Miteva, K. Landfester and S. Baluschev, Chem. Phys. Chem., 13, 3112 (2012); doi:10.1002/cphc.201200306; (d) S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov and A. Cheprakov, New J. Phys., 10, 013007 (2008); doi:10.1088/1367-2630/10/1/013007.
- L.B. Bolzon, H.R. Airoldi, F.B. Zanardi, J.G. Granado and Y. Iamamoto, Micropor. Mesopor. Mater., 168, 37 (2013); doi:10.1016/j.micromeso.2012.09.039.
- T.N. Singh-Rachford and F.N. Castellano, Coord. Chem. Rev., 254, 2560 (2010); doi:10.1016/j.ccr.2010.01.003.
References
Y.Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, R.G. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips and T.C. Schmidt, Energy Environ. Sci., 5, 6953 (2012); doi:10.1039/c2ee21136j.
R.S. Khnayzer, J. Blumhoff, J.A. Harrington, A. Haefele, F. Deng and F.N. Castellano, Chem. Commun., 48, 209 (2011); doi:10.1039/c1cc16015j.
Q. Liu, T. Yang, W. Feng and F. Li, J. Am. Chem. Soc., 134, 5390 (2012); doi:10.1021/ja3003638.
A. Karotki, M. Khurana, J.R. Lepock and B.C. Wilson, Photochem. Photobiol., 82, 443 (2006); doi:10.1562/2005-08-24-RA-657.
G.S. He, P.P. Markowicz, T.-C. Lin and P.N. Prasad, Nature, 415, 767 (2002); doi:10.1038/415767a.
X.M. Wang, F. Jin, Z.G. Chen, S.Q. Liu, X.H. Wang, X.M. Duan, X.T. Tao and M.H. Jiang, J. Phys. Chem. C, 115, 776 (2011); doi:10.1021/jp1081005.
X.Y. Huang, S.Y. Han, W. Huang and X.G. Liu, Chem. Soc. Rev., 42, 173 (2013); doi: 10.1039/C2CS35288E.
S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda and G. Wegner, Phys. Rev. Lett., 97, 143903 (2006); doi:10.1103/PhysRevLett.97.143903.
(a) A. Monguzzi, R. Tubino and F. Meinardi, Phys. Rev. B, 77, 155122 (2008); doi:10.1103/PhysRevB.77.155122.; (b) T.N. Singh-Rachford and F.N. Castellano, Inorg. Chem., 48, 2541 (2009); doi:10.1021/ic802114d.
(a) V. Yakutkin, S. Aleshchenkov, S. Chernov, T. Miteva, G. Nelles, A. Cheprakov and S. Baluschev, Chem. Eur. J., 14, 9846 (2008); doi:10.1002/chem.200801305.; (b) S. Baluschev, J. Jacob, Y.S. Avlasevich, P.E. Keivanidis, T. Miteva, A. Yasuda, G. Nelles, A.C. Grimsdale, K. Müllen and G. Wegner, Chem. Phys. Chem., 6, 1250 (2005); doi:10.1002/cphc.200500098.; (c) Y.Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, R.G.C.R. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips and T.W. Schmidt, Energy Environ. Sci., 5, 6953 (2012); doi:10.1039/c2ee21136j.
(a) T.N. Singh-Rachford, A. Nayak, M.L. Muro-Small, S. Goeb, M.J. Therien and F.N. Castellano, J. Am. Chem. Soc., 132, 14203 (2010); doi:10.1021/ja105510k.; (b) S.K. Sugunan, U. Tripathy, S.M.K. Brunet, M.F. Paige and R.P. Steer, J. Phys. Chem. A, 113, 8548 (2009); doi:10.1021/jp9034776.
C.E. Mccusker, F.N. Castellano, Chem. Commum., 49, 3537 (2013); doi:10.1039/c3cc40778k.
(a) R.R. Islangulov, D.V. Kozlov and F.N. Castellano, Chem. Commun., 30, 3776 (2005); doi:10.1039/b506575e.; (b) W.H. Wu, S.M. Ji, W.T. Wu, J.Y. Shao, H.M. Guo, T.D. James and J.Z. Zhao, Chem. Eur. J., 18, 4953 (2012); doi:10.1002/chem.201101377.; (c) G. Bergamini, P. Ceroni, P. Fabbrizi and S. Cicchi, Chem. Commun., 47, 12780 (2011); doi:10.1039/c1cc16000a.
L.H. Ma, H.M. Guo, Q.T. Li, S. Guo and J.Z. Zhao, Dalton Trans., 41, 10680 (2012); doi:10.1039/c2dt30955f.
(a) Z.Q. Liang, B. Sun, C.Q. Ye, X.M. Wang, X.T. Tao, Q.H. Wang, P. Ding, B. Wang, J.J. Wang, Chem. Phys. Chem., 14, 3517 (2013); doi:10.1002/cphc.201300571;; (b) T.N. Singh-Rachford, A. Haefele, R. Ziessel and F.N. Castellano, J. Am. Chem. Soc., 130, 16164 (2008); doi:10.1021/ja807056a.; (c) A. Turshatov, D. Busko, Y. Avlasevich, T. Miteva, K. Landfester and S. Baluschev, Chem. Phys. Chem., 13, 3112 (2012); doi:10.1002/cphc.201200306; (d) S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov and A. Cheprakov, New J. Phys., 10, 013007 (2008); doi:10.1088/1367-2630/10/1/013007.
L.B. Bolzon, H.R. Airoldi, F.B. Zanardi, J.G. Granado and Y. Iamamoto, Micropor. Mesopor. Mater., 168, 37 (2013); doi:10.1016/j.micromeso.2012.09.039.
T.N. Singh-Rachford and F.N. Castellano, Coord. Chem. Rev., 254, 2560 (2010); doi:10.1016/j.ccr.2010.01.003.