Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Decontamination Foam Containing Silica Nanoparticles of Various Structures
Corresponding Author(s) : Chong-Hun Jung
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
The purpose of the present study is to investigate the silica nanoparticles of various structures for their foam stability and dissolution using decontamination foam. Silica nanoparticles of various structures such as mesoporous, core-shell and non-porous silica nanoparticles were synthesized for an evaluation of decontamination foam. Compared to foam stabilized with only 1 % ElotantTM Milcoside 440N (EM440N) surfactant, the addition of 1 wt. % mesoporous nanoparticles improves the foam stability by a factor of 8. The oxide dissolution was evaluated using decontamination foam with silica nanoparticles and 1 M HNO3 using corroded specimens. The mixture of mesoporous nanoparticles in the surfactant improves the oxide dissolution by a factor of 2 compared with the surfactant only. These results indicate that the mesoporous silica nanoparticles improve the foam stability and oxide dissolution owing to an enhancement in the contact time of the chemical reagent and the corroded specimen.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Dame, C. Fritz, O. Pitois and S. Faure, Colloids Surf. A, 263, 210 (2005); doi:10.1016/j.colsurfa.2004.12.053.
- B.P. Binks, Curr. Opin. Colloid Interf. Sci., 7, 21 (2002); doi:10.1016/S1359-0294(02)00008-0.
- M. Abkarian, A.B. Subramaniam, S.H. Kim, R.J. Larsen, S.M. Yang and H.A. Stone, Phys. Rev. Lett., 99, 188301 (2007); doi:10.1103/PhysRevLett.99.188301.
- A. Cervantes Martinez, E. Rio, G. Delon, A. Saint-Jalmes, D. Langevin and B.P. Binks, Soft Matter, 4, 1531 (2008); doi:10.1039/b804177f.
- P.M. Kruglyakov, P.R. Taube, Coll. J.-USSR, 34, 194 (1972).
- S. Lüdtke, T. Adam and K.K. Unger, J. Chromatogr. A, 786, 229 (1997); doi:10.1016/S0021-9673(97)00600-6.
- Q. Cai, Z.S. Luo, W.Q. Pang, Y.W. Fan, X.H. Chen and F.Z. Cui, Chem. Mater., 13, 258 (2001); doi:10.1021/cm990661z.
- X. Pang, J. Gao and F. Tang, J. Non-Cryst. Solids, 351, 1705 (2005); doi:10.1016/j.jnoncrysol.2005.03.044.
- W. Stöber, A. Fink and E. Bohn, J. Colloid Interf. Sci., 26, 62 (1968); doi:10.1016/0021-9797(68)90272-5.
- S. Faure, B. Fournel, P. Fuentes, US patent 7,662,754 B2, (2010).
References
C. Dame, C. Fritz, O. Pitois and S. Faure, Colloids Surf. A, 263, 210 (2005); doi:10.1016/j.colsurfa.2004.12.053.
B.P. Binks, Curr. Opin. Colloid Interf. Sci., 7, 21 (2002); doi:10.1016/S1359-0294(02)00008-0.
M. Abkarian, A.B. Subramaniam, S.H. Kim, R.J. Larsen, S.M. Yang and H.A. Stone, Phys. Rev. Lett., 99, 188301 (2007); doi:10.1103/PhysRevLett.99.188301.
A. Cervantes Martinez, E. Rio, G. Delon, A. Saint-Jalmes, D. Langevin and B.P. Binks, Soft Matter, 4, 1531 (2008); doi:10.1039/b804177f.
P.M. Kruglyakov, P.R. Taube, Coll. J.-USSR, 34, 194 (1972).
S. Lüdtke, T. Adam and K.K. Unger, J. Chromatogr. A, 786, 229 (1997); doi:10.1016/S0021-9673(97)00600-6.
Q. Cai, Z.S. Luo, W.Q. Pang, Y.W. Fan, X.H. Chen and F.Z. Cui, Chem. Mater., 13, 258 (2001); doi:10.1021/cm990661z.
X. Pang, J. Gao and F. Tang, J. Non-Cryst. Solids, 351, 1705 (2005); doi:10.1016/j.jnoncrysol.2005.03.044.
W. Stöber, A. Fink and E. Bohn, J. Colloid Interf. Sci., 26, 62 (1968); doi:10.1016/0021-9797(68)90272-5.
S. Faure, B. Fournel, P. Fuentes, US patent 7,662,754 B2, (2010).