Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhancing the Photocatalytic Activity of Nickel Ferrite Doped with Graphene
Corresponding Author(s) : Shou-Qing Liu
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
Graphene-nickel ferrite (G-NiFe2O4) has been successfully synthesized using graphene, NiSO4·6H2O and FeCl3·6H2O as the raw materials by the hydrothermal method at 180 ºC for 10 h. The as-synthesized sample was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer at room temperature. The photo-Fenton degradations of methylene blue, rhodamine B and malachite green were conducted in the presence of oxalic acid using G-NiFe2O4 as the photo-Fenton catalyst under visible light irradiation. The results showed that the G-NiFe2O4 catalyst can effectively decompose the organic pollutants under visible light irradiation and the decolorization ratio of methylene blue in the concentration of 20 mg/L reached over 87.8 % in 10 h, whereas the decolorization ratio was only 28.8 % when the NiFe2O4 was utilized as the catalyst under the similar conditions. The decolorization ratio maintained over 70 % after 8 runs via a magnetic field for separation, showing the G-NiFe2O4 catalyst is stable and easily separable for utilization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.Q. Liu, L.R. Feng, N. Xu, Z.G. Chen and X.M. Wang, Chem. Eng. J., 203, 432 (2012); doi:10.1016/j.cej.2012.07.071.
- Z.-D. Meng, L. Zhu, J.-G. Choi, M.-L. Chen and W.-C. Oh, J. Mater. Chem., 21, 7596 (2011); doi:10.1039/c1jm10301f.
- X.W. Zhang, M.H. Zhou and L.C. Lei, Carbon, 43, 1700 (2005); doi:10.1016/j.carbon.2005.02.013.
- Z. Peining, A.S. Nair, P. Shengjie, Y. Shengyuan and S. Ramakrishna, ACS Appl. Mater. Interfaces, 4, 581 (2012); doi:10.1021/am201448p.
- M.S.A. Sher Shah, A.R. Park, K. Zhang, J.H. Park and P.J. Yoo, ACS Appl. Mater. Interfaces, 4, 3893 (2012); doi:10.1021/am301287m.
- C. Liu, Y. Teng, R. Liu, S. Luo, Y. Tang, L. Chen and Q. Cai, Carbon, 49, 5312 (2011); doi:10.1016/j.carbon.2011.07.051.
- W. Hummers Jr. and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
- S.K. Kurinec, N. Okeke, S.K. Gupta, H. Zhang and T.D. Xiao, J. Mater. Sci., 41, 8181 (2006); doi:10.1007/s10853-006-0393-0.
- M. Mouallem-Bahout, S. Bertrand and O. Peňa, J. Solid State Chem., 178, 1080 (2005); doi:10.1016/j.jssc.2005.01.009.
- M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla and Y.J. Chabal, ACS Nano, 4, 5861 (2010); doi:10.1021/nn101844t.
References
S.Q. Liu, L.R. Feng, N. Xu, Z.G. Chen and X.M. Wang, Chem. Eng. J., 203, 432 (2012); doi:10.1016/j.cej.2012.07.071.
Z.-D. Meng, L. Zhu, J.-G. Choi, M.-L. Chen and W.-C. Oh, J. Mater. Chem., 21, 7596 (2011); doi:10.1039/c1jm10301f.
X.W. Zhang, M.H. Zhou and L.C. Lei, Carbon, 43, 1700 (2005); doi:10.1016/j.carbon.2005.02.013.
Z. Peining, A.S. Nair, P. Shengjie, Y. Shengyuan and S. Ramakrishna, ACS Appl. Mater. Interfaces, 4, 581 (2012); doi:10.1021/am201448p.
M.S.A. Sher Shah, A.R. Park, K. Zhang, J.H. Park and P.J. Yoo, ACS Appl. Mater. Interfaces, 4, 3893 (2012); doi:10.1021/am301287m.
C. Liu, Y. Teng, R. Liu, S. Luo, Y. Tang, L. Chen and Q. Cai, Carbon, 49, 5312 (2011); doi:10.1016/j.carbon.2011.07.051.
W. Hummers Jr. and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
S.K. Kurinec, N. Okeke, S.K. Gupta, H. Zhang and T.D. Xiao, J. Mater. Sci., 41, 8181 (2006); doi:10.1007/s10853-006-0393-0.
M. Mouallem-Bahout, S. Bertrand and O. Peňa, J. Solid State Chem., 178, 1080 (2005); doi:10.1016/j.jssc.2005.01.009.
M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla and Y.J. Chabal, ACS Nano, 4, 5861 (2010); doi:10.1021/nn101844t.