Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of La2Mo2O9 Nanocrystallites by Sol-Gel Process
Corresponding Author(s) : Quanzheng Zhang
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
La2Mo2O9 nanocrystallites were synthesized successfully using sol-gel process with (NH4)6Mo7O24·4H2O, La(NO3)3·6H2O, citric acid and PEG400 as original materials. The result shows that spherical well-crystallized La2Mo2O9 nanoparticles were formed at 500 ºC with sizes of ca. 80 and 20 nm, which indicates the secondary nucleation exists in the reaction process. The synthesized La2Mo2O9 nanocrystallites were characterized by XRD, TEM, IR and UV-visible spectra.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.C. Shan, Y.M. Wang, H.M. Ding and F.Q. Huang, J. Mol. Catal. A, 302, 54 (2009); doi: 10.1016/j.molcata.2008.11.030.
- S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj and O.Y. Khyzhun, J. Alloys Comp., 496, 61 (2010); doi:10.1016/j.jallcom.2010.02.107.
- T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruangrat and S. Thongtem, J. Alloys Comp., 506, 475 (2010); doi:10.1016/j.jallcom.2010.07.033.
- S. Georges, F. Goutenoire, P. Lacorre and M.C. Steil, J. Eur. Ceram. Soc., 25, 3619 (2005); doi:10.1016/j.jeurceramsoc.2004.09.029.
- C. Tealdi, G. Chiodelli, L. Malavasi and G. Flor, J. Mater. Chem., 14, 3553 (2004); doi:10.1039/b410437d.
- A. Tarancon, G. Dezanneau, J. Arbiol, F. Peiró and J.R. Morante, J. Power Sources, 118, 256 (2003); doi:10.1016/S0378-7753(03)00091-0.
- S. Basu, P.S. Devi and H.S. Maiti, Appl. Phys. Lett., 85, 3486 (2004); doi:10.1063/1.1808505.
- Z.G. Yi, Q.F. Fang and X.P. Wang, Solid State Ion., 160, 117 (2003); doi:10.1016/S0167-2738(03)00143-7.
- D. Marrero-López, J. Pena-Martínez, D. Pérez-Coll and P. Núňez, J. Alloys Comp., 422, 249 (2006); doi:10.1016/j.jallcom.2005.10.084.
- A. Subramania, T. Saradha and S. Muzhumathi, Mater. Res. Bull., 43, 1153 (2008); doi:10.1016/j.materresbull.2007.06.005.
- S. Georges, R.A. Rocha and E. Djurado, J. Phys. Chem. C, 112, 3194 (2008); doi:10.1021/jp0775552.
References
Z.C. Shan, Y.M. Wang, H.M. Ding and F.Q. Huang, J. Mol. Catal. A, 302, 54 (2009); doi: 10.1016/j.molcata.2008.11.030.
S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj and O.Y. Khyzhun, J. Alloys Comp., 496, 61 (2010); doi:10.1016/j.jallcom.2010.02.107.
T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruangrat and S. Thongtem, J. Alloys Comp., 506, 475 (2010); doi:10.1016/j.jallcom.2010.07.033.
S. Georges, F. Goutenoire, P. Lacorre and M.C. Steil, J. Eur. Ceram. Soc., 25, 3619 (2005); doi:10.1016/j.jeurceramsoc.2004.09.029.
C. Tealdi, G. Chiodelli, L. Malavasi and G. Flor, J. Mater. Chem., 14, 3553 (2004); doi:10.1039/b410437d.
A. Tarancon, G. Dezanneau, J. Arbiol, F. Peiró and J.R. Morante, J. Power Sources, 118, 256 (2003); doi:10.1016/S0378-7753(03)00091-0.
S. Basu, P.S. Devi and H.S. Maiti, Appl. Phys. Lett., 85, 3486 (2004); doi:10.1063/1.1808505.
Z.G. Yi, Q.F. Fang and X.P. Wang, Solid State Ion., 160, 117 (2003); doi:10.1016/S0167-2738(03)00143-7.
D. Marrero-López, J. Pena-Martínez, D. Pérez-Coll and P. Núňez, J. Alloys Comp., 422, 249 (2006); doi:10.1016/j.jallcom.2005.10.084.
A. Subramania, T. Saradha and S. Muzhumathi, Mater. Res. Bull., 43, 1153 (2008); doi:10.1016/j.materresbull.2007.06.005.
S. Georges, R.A. Rocha and E. Djurado, J. Phys. Chem. C, 112, 3194 (2008); doi:10.1021/jp0775552.