Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Alkanolmonoamines as Activators for the Hot Potash Process for CO2 Capture
Corresponding Author(s) : Mamshad Ahmad
Asian Journal of Chemistry,
Vol. 26 No. 4 (2014): Vol 26 Issue 4
Abstract
The present study is based on use of activators in the hot potash process. Glycine is commonly used as an activator in the Giammarco Vetrocoke process. This paper presents a systematic study on use of alkanolmonoamines as possible alternate activators. These alkanolmonoamines contain only one amino group that may be unsubstituted/substituted (-NH2, -NRH or -NR2) and thus the acidity of these compounds is one that arises from the only amino group that is there in the molecule. Out of these, monoethanolamine, diethanolamine and triethanolamine are previously reported as activators in the literature. This paper reports the experimental studies on such alkanolmonoamines including the new alkanolmonoamine structures also. The proposed amines as activators have shown highly promising results. A 632-700 % increase in rate of absorption, 493 % increase in capacity of absorption of K2CO3 and 313-400 % increase in the CO2 regenerated has been observed for some of these amines. In case of glycine this increase is 134, 214 and 161 %, respectively. A combination of these with diethanolamine increases the rate of absorption considerably. This study is directed towards finding a non-degradable, cheaper, environmentally friendly and more efficient alternative to glycine as activator.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- http://www.wmo.int/pages/mediacentre/press_releases/pr_965_en.html.
- S. Wong and R. Bioletti, Carbon dioxide separation technologies, Carbon & Energy management, Alberta Research Council, Edmonton, Alberta, T6N 1E4, Canada (2002).
- D.P. Hagewiesche, S.S. Ashour, H.A. Al-Ghawas and O.C. Sandall, Chem. Eng. Sci., 50, 1071 (1995); doi:10.1016/0009-2509(94)00489-E.
- G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder and M. Attalla, Environ. Sci. Technol., 43, 6427 (2009); doi:10.1021/es901376a.
- B.P. Mandal, M. Guha, A.K. Biswas and S.S. Bandyopadhyay, Chem. Eng. Sci., 56, 6217 (2001); doi:10.1016/S0009-2509(01)00279-2.
- G.T. Rochelle, A.F. Seibert, J.T. Cullinane and T. Jones, Quarterly progress report, Department of chemical engineering, The University of Texas at Austin (2002).
- H.E. Benson, J.H. Field and R.M. Jimeson, Chem. Eng. Prog., 50, 356 (1954).
- H.E. Benson, J.H. Field and W.P. Hahens, Chem. Eng. Prog., 52, 433 (1956).
- V.P. Danckwerts and K.M. McNeil, Chem. Eng. Sci., 22, 925 (1967); doi:10.1016/0009-2509(67)80157-X.
- U.K. Ghosh, S.E. Kentish and G.W. Stevens, Energy Procedia, 1, 1075 (2009); doi:10.1016/j.egypro.2009.01.142.
- R. Wylie and G. Creek, US Patent 2718454 (1955).
- B.J. Mayland, and US Patent 3144301 (1964).
- H.J.F.A. Hesse, M.J. Smit and F.J. Du Toit, US Patent 6312655 B1 (2001).
- G. Sartori and D.W. Savage, US Patent 4094957 (1978).
- G. Sartori and F. Leder, US Patent 4112050 (1978).
- G. Sartori, F. Leder and C.D. Mar, US Patent 4217237 (1980).
- F. Leder, D.W. Savage and A.L. Shrier, US Patent 3848057 (1974).
- A.L. Shrier and P.V. Danckwerts, US Patent 3856921(1974).
- A.A. Oswald, G. Satori, D.W. Savage and W.A. Thaler, US Patent 4581209 (1986).
- J.T. Cullinane and G.T. Rochelle, Chem. Eng. Sci., 59, 3619 (2004); doi:10.1016/j.ces.2004.03.029.
- G.T. Rochelle and J. Cullinane, US Patent 2007/0044658 A1 (2007).
- J.T. Cullinane and G.T. Rochelle, Ind. Eng. Chem. Res., 45, 2531 (2006); doi:10.1021/ie050230s.
- Z.G. Tang, W. Fei and Y. Oli, Energy Procedia, 4, 307 (2011); doi:10.1016/j.egypro.2011.01.056.
- L. Tomasi, Fertiliser News, 37, 25 (1992).
- M.R. Rahimpour and A.Z. Kashkooli, Iran. J. Sci. Technol, 28(B6), 653 (2004).
- D.C. Harris, Quantitative Chemical Analysis, edn 6 (2002).
- http://apps.echa.europa.eu/registered/data/dossiers.
- E.F. Da Silva and H.F. Svendsen, Ind. Eng. Chem. Res., 42, 4414 (2003); doi:10.1021/ie020808n.
- F. Khalili, A. Henni and A.L.L. East, J. Chem. Eng. Data, 54, 2914 (2009); doi:10.1021/je900005c.
- http://www.chemicalbook.com/productMSDSDetailCB5 202300_EN.htm.
- R.J. Littel, M. Bos and G.J. Knoop, J. Chem. Eng. Data, 35, 276 (1990); doi:10.1021/je00061a014.
- E.S. Etz, R.A. Robinson and R.G. Bates, J. Solution Chem., 2, 405 (1973); doi:10.1007/BF00713253.
- R.N. Roy, J.J. Gibbons, G. LaCross Jr. and C.W. Krueger, J. Solution Chem., 5, 333 (1976); doi:10.1007/BF00647198.
References
http://www.wmo.int/pages/mediacentre/press_releases/pr_965_en.html.
S. Wong and R. Bioletti, Carbon dioxide separation technologies, Carbon & Energy management, Alberta Research Council, Edmonton, Alberta, T6N 1E4, Canada (2002).
D.P. Hagewiesche, S.S. Ashour, H.A. Al-Ghawas and O.C. Sandall, Chem. Eng. Sci., 50, 1071 (1995); doi:10.1016/0009-2509(94)00489-E.
G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder and M. Attalla, Environ. Sci. Technol., 43, 6427 (2009); doi:10.1021/es901376a.
B.P. Mandal, M. Guha, A.K. Biswas and S.S. Bandyopadhyay, Chem. Eng. Sci., 56, 6217 (2001); doi:10.1016/S0009-2509(01)00279-2.
G.T. Rochelle, A.F. Seibert, J.T. Cullinane and T. Jones, Quarterly progress report, Department of chemical engineering, The University of Texas at Austin (2002).
H.E. Benson, J.H. Field and R.M. Jimeson, Chem. Eng. Prog., 50, 356 (1954).
H.E. Benson, J.H. Field and W.P. Hahens, Chem. Eng. Prog., 52, 433 (1956).
V.P. Danckwerts and K.M. McNeil, Chem. Eng. Sci., 22, 925 (1967); doi:10.1016/0009-2509(67)80157-X.
U.K. Ghosh, S.E. Kentish and G.W. Stevens, Energy Procedia, 1, 1075 (2009); doi:10.1016/j.egypro.2009.01.142.
R. Wylie and G. Creek, US Patent 2718454 (1955).
B.J. Mayland, and US Patent 3144301 (1964).
H.J.F.A. Hesse, M.J. Smit and F.J. Du Toit, US Patent 6312655 B1 (2001).
G. Sartori and D.W. Savage, US Patent 4094957 (1978).
G. Sartori and F. Leder, US Patent 4112050 (1978).
G. Sartori, F. Leder and C.D. Mar, US Patent 4217237 (1980).
F. Leder, D.W. Savage and A.L. Shrier, US Patent 3848057 (1974).
A.L. Shrier and P.V. Danckwerts, US Patent 3856921(1974).
A.A. Oswald, G. Satori, D.W. Savage and W.A. Thaler, US Patent 4581209 (1986).
J.T. Cullinane and G.T. Rochelle, Chem. Eng. Sci., 59, 3619 (2004); doi:10.1016/j.ces.2004.03.029.
G.T. Rochelle and J. Cullinane, US Patent 2007/0044658 A1 (2007).
J.T. Cullinane and G.T. Rochelle, Ind. Eng. Chem. Res., 45, 2531 (2006); doi:10.1021/ie050230s.
Z.G. Tang, W. Fei and Y. Oli, Energy Procedia, 4, 307 (2011); doi:10.1016/j.egypro.2011.01.056.
L. Tomasi, Fertiliser News, 37, 25 (1992).
M.R. Rahimpour and A.Z. Kashkooli, Iran. J. Sci. Technol, 28(B6), 653 (2004).
D.C. Harris, Quantitative Chemical Analysis, edn 6 (2002).
http://apps.echa.europa.eu/registered/data/dossiers.
E.F. Da Silva and H.F. Svendsen, Ind. Eng. Chem. Res., 42, 4414 (2003); doi:10.1021/ie020808n.
F. Khalili, A. Henni and A.L.L. East, J. Chem. Eng. Data, 54, 2914 (2009); doi:10.1021/je900005c.
http://www.chemicalbook.com/productMSDSDetailCB5 202300_EN.htm.
R.J. Littel, M. Bos and G.J. Knoop, J. Chem. Eng. Data, 35, 276 (1990); doi:10.1021/je00061a014.
E.S. Etz, R.A. Robinson and R.G. Bates, J. Solution Chem., 2, 405 (1973); doi:10.1007/BF00713253.
R.N. Roy, J.J. Gibbons, G. LaCross Jr. and C.W. Krueger, J. Solution Chem., 5, 333 (1976); doi:10.1007/BF00647198.