Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Study on Synthesis of Sylvestrene by Cyclodimerization of Isoprene: Asynchronous Concerted Mechanism of Diels-Alder Reaction
Corresponding Author(s) : Huai Cao
Asian Journal of Chemistry,
Vol. 26 No. 4 (2014): Vol 26 Issue 4
Abstract
Computations on Diels-Alder cycloadditions of sylvestrene from isoprene monomers reveal asynchronous concerted transition structures. The hardness profiles along the intrinsic reaction coordinate present a minimum shift with respect to the transition states. The densities of HOMO and LUMO can explain why the first new bond is formed at the end of double bonds of two isoprenes. All adducts are stereoisomers with similar energies. The asynchronous degree of the endo addition reaction involved in cis-isoprene as dienophile is greater and its potential energy barrier, 10 kJ/mol, is lower than that of any other reaction pathways.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.D. Grossman, R.M. Ikeda, E.J. Deszyck and A. Bavley, Nature, 199, 661 (1963); doi:10.1038/199661a0.
- R.F. Severson. W.S. Schlotzhauer, O.T. Chortyk, R.F. Arrendale and M.E. Snook, in eds.: P.W. Jones and P. Leber, Precursors of Polynuclear Aromatic Hydrocarbons in Tobacco Smoke, In: Polynuclear Aromatic Hydrocarbons, Ann Arbor Science, Ann Arbor, Michigan, pp. 1-277 (1979).
- J.A. Norton, Chem. Rev., 31, 319 (1942); doi:10.1021/cr60099a003.
- O. Diels and K. Alder, Justus Liebigs Ann. Chem., 460, 98 (1928); doi:10.1002/jlac.19284600106.
- A. Wasserman, Diels-Alder Reactions-organic background and Physico-chemical Aspects, Elsevier, New York (1965).
- J. Hamer, 1,4-Cycloaddition Reactions: the Diels-Alder Reaction in Heterocyclic Syntheses, Academic Press, London (1967).
- K.C. Nicolaou, S.A. Snyder, T. Montagnon and G. Vassilikogiannakis, Angew. Chem. Int. Ed., 41, 1668 (2002); doi:10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z.
- R.B. Woodward and T.J. Katz, Tetrahedron, 5, 70 (1959); doi:10.1016/0040-4020(59)80072-7.
- K.N. Houk, J. Gonzalez and Y. Li, Acc. Chem. Res., 28, 81 (1995); doi:10.1021/ar00050a004.
- Y. Li and K.N. Houk, J. Am. Chem. Soc., 115, 7478 (1993); doi:10.1021/ja00069a055.
- S. Sakai, J. Phys. Chem. A, 104, 922 (2000); doi:10.1021/jp9926894.
- S. Sakai, J. Mol. Struct. (Theochem), 630, 177 (2003); doi:10.1016/S0166-1280(03)00153-2.
- S. Sakai and T. Okumura, J. Mol. Struct. (Theochem), 685, 89 (2004); doi:10.1016/j.theochem.2004.06.052.
- S.M. Bachrach, Pericyclic Reactions, In: Computational Organic Chemistry, John Wiley & Sons, Inc., Hoboken, N.J., pp. 1-117 (2006).
- P.J. Hay, J. Chem. Phys., 66, 4377 (1977); doi:10.1063/1.433731.
- A.D. McLean and G.S. Chandler, J. Chem. Phys., 72, 5639 (1980); doi:10.1063/1.438980.
- M. Head-Gordon, J.A. Pople and M.J. Frisch, Chem. Phys. Lett., 153, 503 (1988); doi:10.1016/0009-2614(88)85250-3.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
- G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley and J. Mantzaris, J. Chem. Phys., 89, 2193 (1988); doi:10.1063/1.455064.
- A.D. Becke, J. Chem. Phys., 98, 1372 (1993); doi:10.1063/1.464304.
- K. Fukui, J. Chem. Phys., 74, 4161 (1970); doi:10.1021/j100717a029.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT. (2009).
- H.-Z. Zhou and C.-R. Han, J. Anhui Univ., (Nat. Sci.), 16, 73 (1992).
- M.E. Squillacote and F. Liang, J. Org. Chem., 70, 6564 (2005); doi:10.1021/jo0500277.
- C.W. Bock, Y.N. Panchenko, S.V. Krasnoshchiokov and R. Aroca, J. Mol. Struct., 160, 337 (1987); doi:10.1016/0022-2860(87)80074-1.
- D. Rowley and H. Steiner, Discuss. Faraday Soc., 10, 198 (1951); doi:10.1039/df9511000198.
- A. Contini, S. Leone, S. Menichetti, C. Viglianisi and P. Trimarco, J. Org. Chem., 71, 5507 (2006); doi:10.1021/jo0604538.
- Y. Wang, X.-L. Zeng and D.-C. Fang, Acta Chim. Sinica, 68, 941 (2010).
- R.G. Pearson, J. Chem. Educ., 64, 561 (1987); doi:10.1021/ed064p561.
- V. Labet, C. Morell, A. Toro-Labbe and A. Grand, Phys. Chem. Chem. Phys., 12, 4142 (2010); doi:10.1039/b924589h.
- R.G. Pearson, Proc. Natl. Acad. Sci. USA, 83, 8440 (1986); doi:10.1073/pnas.83.22.8440.
References
J.D. Grossman, R.M. Ikeda, E.J. Deszyck and A. Bavley, Nature, 199, 661 (1963); doi:10.1038/199661a0.
R.F. Severson. W.S. Schlotzhauer, O.T. Chortyk, R.F. Arrendale and M.E. Snook, in eds.: P.W. Jones and P. Leber, Precursors of Polynuclear Aromatic Hydrocarbons in Tobacco Smoke, In: Polynuclear Aromatic Hydrocarbons, Ann Arbor Science, Ann Arbor, Michigan, pp. 1-277 (1979).
J.A. Norton, Chem. Rev., 31, 319 (1942); doi:10.1021/cr60099a003.
O. Diels and K. Alder, Justus Liebigs Ann. Chem., 460, 98 (1928); doi:10.1002/jlac.19284600106.
A. Wasserman, Diels-Alder Reactions-organic background and Physico-chemical Aspects, Elsevier, New York (1965).
J. Hamer, 1,4-Cycloaddition Reactions: the Diels-Alder Reaction in Heterocyclic Syntheses, Academic Press, London (1967).
K.C. Nicolaou, S.A. Snyder, T. Montagnon and G. Vassilikogiannakis, Angew. Chem. Int. Ed., 41, 1668 (2002); doi:10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z.
R.B. Woodward and T.J. Katz, Tetrahedron, 5, 70 (1959); doi:10.1016/0040-4020(59)80072-7.
K.N. Houk, J. Gonzalez and Y. Li, Acc. Chem. Res., 28, 81 (1995); doi:10.1021/ar00050a004.
Y. Li and K.N. Houk, J. Am. Chem. Soc., 115, 7478 (1993); doi:10.1021/ja00069a055.
S. Sakai, J. Phys. Chem. A, 104, 922 (2000); doi:10.1021/jp9926894.
S. Sakai, J. Mol. Struct. (Theochem), 630, 177 (2003); doi:10.1016/S0166-1280(03)00153-2.
S. Sakai and T. Okumura, J. Mol. Struct. (Theochem), 685, 89 (2004); doi:10.1016/j.theochem.2004.06.052.
S.M. Bachrach, Pericyclic Reactions, In: Computational Organic Chemistry, John Wiley & Sons, Inc., Hoboken, N.J., pp. 1-117 (2006).
P.J. Hay, J. Chem. Phys., 66, 4377 (1977); doi:10.1063/1.433731.
A.D. McLean and G.S. Chandler, J. Chem. Phys., 72, 5639 (1980); doi:10.1063/1.438980.
M. Head-Gordon, J.A. Pople and M.J. Frisch, Chem. Phys. Lett., 153, 503 (1988); doi:10.1016/0009-2614(88)85250-3.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley and J. Mantzaris, J. Chem. Phys., 89, 2193 (1988); doi:10.1063/1.455064.
A.D. Becke, J. Chem. Phys., 98, 1372 (1993); doi:10.1063/1.464304.
K. Fukui, J. Chem. Phys., 74, 4161 (1970); doi:10.1021/j100717a029.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT. (2009).
H.-Z. Zhou and C.-R. Han, J. Anhui Univ., (Nat. Sci.), 16, 73 (1992).
M.E. Squillacote and F. Liang, J. Org. Chem., 70, 6564 (2005); doi:10.1021/jo0500277.
C.W. Bock, Y.N. Panchenko, S.V. Krasnoshchiokov and R. Aroca, J. Mol. Struct., 160, 337 (1987); doi:10.1016/0022-2860(87)80074-1.
D. Rowley and H. Steiner, Discuss. Faraday Soc., 10, 198 (1951); doi:10.1039/df9511000198.
A. Contini, S. Leone, S. Menichetti, C. Viglianisi and P. Trimarco, J. Org. Chem., 71, 5507 (2006); doi:10.1021/jo0604538.
Y. Wang, X.-L. Zeng and D.-C. Fang, Acta Chim. Sinica, 68, 941 (2010).
R.G. Pearson, J. Chem. Educ., 64, 561 (1987); doi:10.1021/ed064p561.
V. Labet, C. Morell, A. Toro-Labbe and A. Grand, Phys. Chem. Chem. Phys., 12, 4142 (2010); doi:10.1039/b924589h.
R.G. Pearson, Proc. Natl. Acad. Sci. USA, 83, 8440 (1986); doi:10.1073/pnas.83.22.8440.