Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Epoxidation of Propylene Over Titanosilicate-1 in Fixed-bed Reactor: Experiments and Kinetics
Corresponding Author(s) : Yaquan Wang
Asian Journal of Chemistry,
Vol. 26 No. 4 (2014): Vol 26 Issue 4
Abstract
The epoxidation of propylene with hydrogen peroxide over titanosilicate-1 is studied in a fixed-bed reactor with methanol/water as the solvent. The effects of methanol concentration (40-70 wt %), hydrogen peroxide concentration (5-20 wt %), pressure (1.8-3 MPa) and temperature (35-50 °C) on the reaction are investigated. The results show that the reaction rate decreases with increasing reaction pressure, which is opposite to that reported in the literature. The activation energy of the reaction is 57.4 kJ mol-1 and the orders with respects to hydrogen peroxide and propylene are 0.71 and 0.29, respectively. The intrinsic kinetic modeling results show that an Eley-Rideal (H2O2 adsorbed) kinetic model incorporating the effects of hydrogen peroxide, propylene, methanol and propylene oxide satisfactorily agrees with the experimental results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.A. Nijhuis, M. Makkee, J.A. Moulijn and B.M. Weckhuysen, Ind. Eng. Chem. Res., 45, 3447 (2006); doi:10.1021/ie0513090.
- C. C. Neri, B. Anfossi, A. Esposito and F. Buonomo, Process for the Epoxidation of Olefinic Compounds. US Patent 4833260 (1989).
- K. Weissermel, H.J. Arpe and C.R. Lindley, Industrial Organic Chemistry; Wiley-VCH: Weinheim (2003).
- D. Kahlich, U. Wiechern and J. Lindner, Propylene Oxide in Ullmann's Encyclopedia of Industrial Chemistry; John Wiley & Sons Inc: Hoboken (2009).
- V.H. Nguyen, H.Y. Chan, J.C.S. Wu and H. Bai, Chem. Eng. J., 179, 285 (2012); doi:10.1016/j.cej.2011.11.003.
- T.A. Nijhuis, B.J. Huizinga, M. Makkee and J.A. Moulijn, Ind. Eng. Chem. Res., 38, 884 (1999); doi:10.1021/ie980494x.
- R. Meiers and W.F. Holderich, Catal. Lett., 59, 161 (1999); doi:10.1023/A:1019024705869.
- G. Jenzer, T. Mallat, M. Maciejewski, F. Eigenmann and A. Baiker, Appl. Catal. A, 208, 125 (2001); doi:10.1016/S0926-860X(00)00689-X.
- A.K. Sinha, S. Seelan, S. Tsubota and M. Haruta, Top. Catal., 29, 95 (2004); doi:10.1023/B:TOCA.0000029791.69935.53.
- N. Yap, R.P. Andres and W.N. Delgass, J. Catal., 226, 156 (2004); doi:10.1016/j.jcat.2004.05.016.
- A.K. Sinha, S. Seelan, M. Okumura, T. Akita, S. Tsubota and M. Haruta, J. Phys. Chem. B, 109, 3956 (2005); doi:10.1021/jp0465229.
- J.L. Zhao, J.C. Zhou, J. Su, H.C. Guo, X.S. Wang and W.M. Gong, AIChE J., 53, 3204 (2007); doi:10.1002/aic.11317.
- Z.H. Suo, M.S. Jin, J.Q. Lu, Z.B. Wei and C. Li, J. Nat. Gas Chem., 17, 184 (2008); doi:10.1016/S1003-9953(08)60049-3.
- T. Liu, P. Hacarlioglu, S.T. Oyama, M.F. Luo, X.R. Pan and J.Q. Lu, J. Catal., 267, 202 (2009); doi:10.1016/j.jcat.2009.08.002.
- H.W. Yang, D.L. Tang, X.N. Lu and Y.Z. Yuan, J. Phys. Chem. C, 113, 8186 (2009); doi:10.1021/jp810187f.
- G.W. Zhan, M.M. Du, D.H. Sun, J.L. Huang, X. Yang, Y. Ma, A.R. Ibrahim and Q.B. Li, Ind. Eng. Chem. Res., 50, 9019 (2011); doi:10.1021/ie200099z.
- J.H. Huang, E. Lima, T. Akita, A. Guzman, C.X. Qi, T. Takei and M. Haruta, J. Catal., 278, 8 (2011); doi:10.1016/j.jcat.2010.11.012.
- G.W. Zhan, M.M. Du, J.L. Huang and Q.B. Li, Catal. Commun., 12, 830 (2011); doi:10.1016/j.catcom.2011.01.026.
- J. Su, J.C. Zhou, C.Y. Liu, X.S. Wang and H.C. Guo, Chin. J. Catal., 31, 1195 (2010); doi:10.1016/S1872-2067(10)60111-8.
- M.M. Du, G.W. Zhan, X. Yang, H.X. Wang, W.S. Lin, Y. Zhou, J. Zhu, L. Lin, J.L. Huang, D.H. Sun, L.S. Jia and Q.B. Li, J. Catal., 283, 192 (2011); doi:10.1016/j.jcat.2011.08.011.
- B.S. Uphade, M. Okumura, S. Tsubota and M. Haruta, Appl. Catal. A, 190, 43 (2000); doi:10.1016/S0926-860X(99)00285-9.
- A.K. Sinha, S. Seelan, T. Akita, S. Tsubota and M. Haruta, Appl. Catal. A, 240, 243 (2003); doi:10.1016/S0926-860X(02)00451-9.
- C.X. Qi, T. Akita, M. Okumura, K. Kuraoka and M. Haruta, Appl. Catal. A, 253, 75 (2003); doi:10.1016/S0926-860X(03)00526-X.
- J. Huang, T. Takei, T. Akita, H. Ohashi and M. Haruta, Appl. Catal. B, 95, 430 (2010); doi:10.1016/j.apcatb.2010.01.023.
- C.X. Qi, J.H. Huang, S.Q. Bao, H.J. Su, T. Akita and M. Haruta, J. Catal., 281, 12 (2011); doi:10.1016/j.jcat.2011.03.028.
- J. Huang, E. Lima, T. Akita, A. Guzmán, C. Qi, T. Takei and M. Haruta, J. Catal., 278, 8 (2011); doi:10.1016/j.jcat.2010.11.012.
- M.G. Clerici, G. Bellussi and U. Romano, J. Catal., 129, 159 (1991); doi:10.1016/0021-9517(91)90019-Z.
- F. Cavani and J.H. Teles, Chem. Sus. Chem., 2, 508 (2009); doi:10.1002/cssc.200900020.
- G.F. Thiele and E. Roland, J. Mol. Catal. Chem., 117, 351 (1997); doi:10.1016/S1381-1169(96)00266-X.
- J.H. Teles, A. Rehfinger, P. Bassler, A. Wenzel, N. Rieber and P. Rudolf, Method for the production of propylene oxide. US Patent 6756503 (2004).
- M.G. Clerici, Oil Gas Eur. Mag., 32, 77 (2006).
- S. Park, K.M. Cho, M.H. Youn, J.G. Seo, S.H. Baeck, T.J. Kim, Y.M. Chung, S.H. Oh and I.K. Song, Catal. Lett., 122, 349 (2008); doi:10.1007/s10562-007-9387-z.
- G. Paparatto, A. Forlin and P. Tegon, Process for the Preparation of Olefin Oxides, US Patent 7442817 (2008).
- V. Arca, A. Boscolo Boscoletto, N. Fracasso, L. Meda and G. Ranghino, J. Mol. Catal. Chem., 243, 264 (2006); doi:10.1016/j.molcata.2005.08.040.
- W.G. Cheng, X.S. Wang, G. Li, X.W. Guo and S.J. Zhang, J. Catal., 255, 343 (2008); doi:10.1016/j.jcat.2008.02.018.
- X.W. Liu, X.S. Wang, X.W. Guo and G. Li, Catal. Today, 93–95, 505 (2004); doi:10.1016/j.cattod.2004.06.077.
- G. Li, J. Meng, X. Wang and G. Xinwen, React. Kinet. Catal. Lett., 82, 73 (2004); doi:10.1023/B:REAC.0000028807.48991.fc.
- Z.G. Zhang, J.N. Kang and Y. Wang, React. Kinet. Catal. Lett., 92, 49 (2007); doi:10.1007/s11144-007-5092-6.
- X.H. Liang, Z.T. Mi, Y.L. Wu, L. Wang and E.H. Xing, React. Kinet. Catal. Lett., 80, 207 (2003); doi:10.1023/B:REAC.0000006127.34574.a7.
- S.B. Shin and D. Chadwick, Ind. Eng. Chem. Res., 49, 8125 (2010); doi:10.1021/ie100083u.
- S.C. Pan, Z. Tang, T.S. Tao and Y.Y. Feng, Adv. Fine Petrochem., 2, 38 (2001).
- G. Li, X.S. Wang, H.S. Yan, Y.Y. Chen and Q.S. Su, Appl. Catal. A, 218, 31 (2001); doi:10.1016/S0926-860X(01)00607-X.
- G. Li, X. Wang, H. Yan, Y. Liu and X. Liu, Appl. Catal. A, 236, 1 (2002); doi:10.1016/S0926-860X(02)00288-0.
- Y. Dong and X. Guo, Acta Petrol. Sin., 26, 677 (2010). (Petroleum Processing Section).
- M. Taramasso, G. Perego and B. Notari, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, US Patent 4410501 (1983).
- D.P. Serrano, R. Sanz, P. Pizarro, I. Moreno, P. de Frutos and S. Blázquez, Catal. Today, 143, 151 (2009); doi:10.1016/j.cattod.2008.09.039.
- H. Thomas, H. Willi, T. Georg and S. Joerg, Process for the epoxidation of olefins, Eur. Patent 1247805 (2002).
- J. Hanika and A. Hajkova, Chem. Prum., 37, 398 (1987).
- H. Liu, G.Z. Lu, Y.L. Guo, Y. Guo and J.S. Wang, Chem. Eng. J., 116, 179 (2006); doi:10.1016/j.cej.2005.12.001.
- G.N. Vayssilov, Catal. Rev., Sci. Eng., 39, 209 (1997); doi:10.1080/01614949709353777.
- G. Bellussi, A. Carati, M.G. Clerici, G. Maddinelli and R. Millini, J. Catal., 133, 220 (1992); doi:10.1016/0021-9517(92)90199-R.
- P.E. Sinclair and C.R.A. Catlow, J. Phys. Chem. B, 103, 1084 (1999); doi:10.1021/jp9821679.
- M.G. Evans and M. Polanyi, Trans. Faraday Soc., 31, 875 (1935); doi:10.1039/tf9353100875.
- R.H. Perry and D.W. Green, Perry's Chemical Engineers' Handbook; McGraw-Hill: New York (2007).
References
T.A. Nijhuis, M. Makkee, J.A. Moulijn and B.M. Weckhuysen, Ind. Eng. Chem. Res., 45, 3447 (2006); doi:10.1021/ie0513090.
C. C. Neri, B. Anfossi, A. Esposito and F. Buonomo, Process for the Epoxidation of Olefinic Compounds. US Patent 4833260 (1989).
K. Weissermel, H.J. Arpe and C.R. Lindley, Industrial Organic Chemistry; Wiley-VCH: Weinheim (2003).
D. Kahlich, U. Wiechern and J. Lindner, Propylene Oxide in Ullmann's Encyclopedia of Industrial Chemistry; John Wiley & Sons Inc: Hoboken (2009).
V.H. Nguyen, H.Y. Chan, J.C.S. Wu and H. Bai, Chem. Eng. J., 179, 285 (2012); doi:10.1016/j.cej.2011.11.003.
T.A. Nijhuis, B.J. Huizinga, M. Makkee and J.A. Moulijn, Ind. Eng. Chem. Res., 38, 884 (1999); doi:10.1021/ie980494x.
R. Meiers and W.F. Holderich, Catal. Lett., 59, 161 (1999); doi:10.1023/A:1019024705869.
G. Jenzer, T. Mallat, M. Maciejewski, F. Eigenmann and A. Baiker, Appl. Catal. A, 208, 125 (2001); doi:10.1016/S0926-860X(00)00689-X.
A.K. Sinha, S. Seelan, S. Tsubota and M. Haruta, Top. Catal., 29, 95 (2004); doi:10.1023/B:TOCA.0000029791.69935.53.
N. Yap, R.P. Andres and W.N. Delgass, J. Catal., 226, 156 (2004); doi:10.1016/j.jcat.2004.05.016.
A.K. Sinha, S. Seelan, M. Okumura, T. Akita, S. Tsubota and M. Haruta, J. Phys. Chem. B, 109, 3956 (2005); doi:10.1021/jp0465229.
J.L. Zhao, J.C. Zhou, J. Su, H.C. Guo, X.S. Wang and W.M. Gong, AIChE J., 53, 3204 (2007); doi:10.1002/aic.11317.
Z.H. Suo, M.S. Jin, J.Q. Lu, Z.B. Wei and C. Li, J. Nat. Gas Chem., 17, 184 (2008); doi:10.1016/S1003-9953(08)60049-3.
T. Liu, P. Hacarlioglu, S.T. Oyama, M.F. Luo, X.R. Pan and J.Q. Lu, J. Catal., 267, 202 (2009); doi:10.1016/j.jcat.2009.08.002.
H.W. Yang, D.L. Tang, X.N. Lu and Y.Z. Yuan, J. Phys. Chem. C, 113, 8186 (2009); doi:10.1021/jp810187f.
G.W. Zhan, M.M. Du, D.H. Sun, J.L. Huang, X. Yang, Y. Ma, A.R. Ibrahim and Q.B. Li, Ind. Eng. Chem. Res., 50, 9019 (2011); doi:10.1021/ie200099z.
J.H. Huang, E. Lima, T. Akita, A. Guzman, C.X. Qi, T. Takei and M. Haruta, J. Catal., 278, 8 (2011); doi:10.1016/j.jcat.2010.11.012.
G.W. Zhan, M.M. Du, J.L. Huang and Q.B. Li, Catal. Commun., 12, 830 (2011); doi:10.1016/j.catcom.2011.01.026.
J. Su, J.C. Zhou, C.Y. Liu, X.S. Wang and H.C. Guo, Chin. J. Catal., 31, 1195 (2010); doi:10.1016/S1872-2067(10)60111-8.
M.M. Du, G.W. Zhan, X. Yang, H.X. Wang, W.S. Lin, Y. Zhou, J. Zhu, L. Lin, J.L. Huang, D.H. Sun, L.S. Jia and Q.B. Li, J. Catal., 283, 192 (2011); doi:10.1016/j.jcat.2011.08.011.
B.S. Uphade, M. Okumura, S. Tsubota and M. Haruta, Appl. Catal. A, 190, 43 (2000); doi:10.1016/S0926-860X(99)00285-9.
A.K. Sinha, S. Seelan, T. Akita, S. Tsubota and M. Haruta, Appl. Catal. A, 240, 243 (2003); doi:10.1016/S0926-860X(02)00451-9.
C.X. Qi, T. Akita, M. Okumura, K. Kuraoka and M. Haruta, Appl. Catal. A, 253, 75 (2003); doi:10.1016/S0926-860X(03)00526-X.
J. Huang, T. Takei, T. Akita, H. Ohashi and M. Haruta, Appl. Catal. B, 95, 430 (2010); doi:10.1016/j.apcatb.2010.01.023.
C.X. Qi, J.H. Huang, S.Q. Bao, H.J. Su, T. Akita and M. Haruta, J. Catal., 281, 12 (2011); doi:10.1016/j.jcat.2011.03.028.
J. Huang, E. Lima, T. Akita, A. Guzmán, C. Qi, T. Takei and M. Haruta, J. Catal., 278, 8 (2011); doi:10.1016/j.jcat.2010.11.012.
M.G. Clerici, G. Bellussi and U. Romano, J. Catal., 129, 159 (1991); doi:10.1016/0021-9517(91)90019-Z.
F. Cavani and J.H. Teles, Chem. Sus. Chem., 2, 508 (2009); doi:10.1002/cssc.200900020.
G.F. Thiele and E. Roland, J. Mol. Catal. Chem., 117, 351 (1997); doi:10.1016/S1381-1169(96)00266-X.
J.H. Teles, A. Rehfinger, P. Bassler, A. Wenzel, N. Rieber and P. Rudolf, Method for the production of propylene oxide. US Patent 6756503 (2004).
M.G. Clerici, Oil Gas Eur. Mag., 32, 77 (2006).
S. Park, K.M. Cho, M.H. Youn, J.G. Seo, S.H. Baeck, T.J. Kim, Y.M. Chung, S.H. Oh and I.K. Song, Catal. Lett., 122, 349 (2008); doi:10.1007/s10562-007-9387-z.
G. Paparatto, A. Forlin and P. Tegon, Process for the Preparation of Olefin Oxides, US Patent 7442817 (2008).
V. Arca, A. Boscolo Boscoletto, N. Fracasso, L. Meda and G. Ranghino, J. Mol. Catal. Chem., 243, 264 (2006); doi:10.1016/j.molcata.2005.08.040.
W.G. Cheng, X.S. Wang, G. Li, X.W. Guo and S.J. Zhang, J. Catal., 255, 343 (2008); doi:10.1016/j.jcat.2008.02.018.
X.W. Liu, X.S. Wang, X.W. Guo and G. Li, Catal. Today, 93–95, 505 (2004); doi:10.1016/j.cattod.2004.06.077.
G. Li, J. Meng, X. Wang and G. Xinwen, React. Kinet. Catal. Lett., 82, 73 (2004); doi:10.1023/B:REAC.0000028807.48991.fc.
Z.G. Zhang, J.N. Kang and Y. Wang, React. Kinet. Catal. Lett., 92, 49 (2007); doi:10.1007/s11144-007-5092-6.
X.H. Liang, Z.T. Mi, Y.L. Wu, L. Wang and E.H. Xing, React. Kinet. Catal. Lett., 80, 207 (2003); doi:10.1023/B:REAC.0000006127.34574.a7.
S.B. Shin and D. Chadwick, Ind. Eng. Chem. Res., 49, 8125 (2010); doi:10.1021/ie100083u.
S.C. Pan, Z. Tang, T.S. Tao and Y.Y. Feng, Adv. Fine Petrochem., 2, 38 (2001).
G. Li, X.S. Wang, H.S. Yan, Y.Y. Chen and Q.S. Su, Appl. Catal. A, 218, 31 (2001); doi:10.1016/S0926-860X(01)00607-X.
G. Li, X. Wang, H. Yan, Y. Liu and X. Liu, Appl. Catal. A, 236, 1 (2002); doi:10.1016/S0926-860X(02)00288-0.
Y. Dong and X. Guo, Acta Petrol. Sin., 26, 677 (2010). (Petroleum Processing Section).
M. Taramasso, G. Perego and B. Notari, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, US Patent 4410501 (1983).
D.P. Serrano, R. Sanz, P. Pizarro, I. Moreno, P. de Frutos and S. Blázquez, Catal. Today, 143, 151 (2009); doi:10.1016/j.cattod.2008.09.039.
H. Thomas, H. Willi, T. Georg and S. Joerg, Process for the epoxidation of olefins, Eur. Patent 1247805 (2002).
J. Hanika and A. Hajkova, Chem. Prum., 37, 398 (1987).
H. Liu, G.Z. Lu, Y.L. Guo, Y. Guo and J.S. Wang, Chem. Eng. J., 116, 179 (2006); doi:10.1016/j.cej.2005.12.001.
G.N. Vayssilov, Catal. Rev., Sci. Eng., 39, 209 (1997); doi:10.1080/01614949709353777.
G. Bellussi, A. Carati, M.G. Clerici, G. Maddinelli and R. Millini, J. Catal., 133, 220 (1992); doi:10.1016/0021-9517(92)90199-R.
P.E. Sinclair and C.R.A. Catlow, J. Phys. Chem. B, 103, 1084 (1999); doi:10.1021/jp9821679.
M.G. Evans and M. Polanyi, Trans. Faraday Soc., 31, 875 (1935); doi:10.1039/tf9353100875.
R.H. Perry and D.W. Green, Perry's Chemical Engineers' Handbook; McGraw-Hill: New York (2007).