Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Low-Temperature Oxidation of Methylene Bridge Bond in Coal by Model Compound
Corresponding Author(s) : Yibo Tang
Asian Journal of Chemistry,
Vol. 26 No. 3 (2014): Vol 26 Issue 3
Abstract
In order to find out characteristics of active structures in coal at early phase of oxidation, diphenylmethane was adopted as the model compound to study the oxidation properties of bridge bond (methylene) in coal with low-temperature experimental condition (293 K-423 K), according to structure of molecular coal. Mean while, the generated oxidation products under different reaction conditions were analyzed qualitatively via FTIR spectrometer and GC-MS. The results show that the new structures which involve C-O, C=O, Ar-O and Ar-OH are constantly generated with temperature rise in the process of low-temperature oxidation of diphenylmethane, especially after the 393 K. Besides, the phenols, benzaldehyde, diphenylmethanone, phenyl benzoate, 2-benzyl phenols and 2-phenolic-diphenylmethanone were detected in oxidation products, which demonstrated this oxidation is a multi-step reaction. Meantime, the substitution between O and H is more easily occurs in -CH2- than in benzene ring. The temperature and time are major factors which affecting low-temperature oxidation of diphenylmethane. In conclusion, this study provides reference for explaining and controlling the low-temperature oxidation of coal from chemical perspective.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Benfell, B.B. Beamish and K.A. Rodgers, Thermochim. Acta, 298, 119 (1997); doi: 10.1016/S0040-6031(97)00142-1.
- D.L. Carpenter and D.S. Giddings, Fuel, 43, 247 (1964).
- H. Wang, B.Z. Dlugogorski and E.M. Kennedy, Fuel, 81, 1913 (2002); doi:10.1016/S0016-2361(02)00122-9.
- J.D. Davis and J.F. Byrne, J. Am. Ceram. Soc., 7, 809 (1924); doi:10.1111/j.1151-2916.1924.tb18175.x.
- Y. Tang, Z. Li and Y. Yang, Asian J. Chem., 25, 441 (2013);doi:10.14233/ajchem.2013.13151.
- D.M. Wang, Mine fire. Xuzhou: China University of Mining and Technology Press, pp. 45-51 (2006).
- Y. Tang, Z. Li and Y. Yang, Asian J. Chem., 25, 3384 (2013); doi:10.14233/ajchem.2013.13803.
- J.N. Carras and B.C. Young, Progr. Energy Combust. Sci., 20, 1 (1994); doi:10.1016/0360-1285(94)90004-3.
- J.J. Pis, G. de la Puente, E. Fuente, A. Morán and F. Rubiera, Thermochim. Acta, 279, 93 (1996); doi:10.1016/S0040-6031(96)90066-0.
- J.C. Jones, K.P. Henderson, J. Littlefair and S. Rennie, Fuel, 77, 19 (1998); doi:10.1016/S0016-2361(97)00155-5.
- B.B. Beamish, M.A. Barakat and J.D. St. George, Int. J. Coal Geol., 45, 217 (2001); doi:10.1016/S0166-5162(00)00034-3.
- M. Trewhella and A. Grint, Fuel, 67, 1135 (1988); doi:10.1016/0016-2361(88)90383-3.
- X. Wei, E. Ogata, Z. Zong, S. Zhou, Z. Qin, J. Liu, K. Shen and H. Li, Fuel Process. Technol., 62, 103 (2000).
- P. Yi, J. Liu and H. Zhao, Coal Conversion, 20, 27 (1997).
- I. Mochida, K. Sakata, K. Maeda, H. Fujitsu and K. Takeshita, Fuel Process. Technol., 3, 207 (1980); doi:10.1016/0378-3820(80)90004-1.
- J.W. Smith, B.D. Batts and T.D. Gilbert, Org. Geochem., 14, 365 (1989); doi:10.1016/0146-6380(89)90002-8.
- J. Wang and C. Deng, J. China Coal Society, 24, 78 (2001).
- T. Shi, J. Deng and X. Wang, J. Fuel Chem.Tech., 32, 6 (2004).
- Y. Tang Z. Li and D. Ma, Asian J. Chem., 25, 8660 (2013); doi:10.14233/ajchem.2013.14926.
- Y. Tang Z. Li and D. Ma, Asian J. Chem., 25, 8667 (2013) doi:10.14233/ajchem.2013.13937.
- J.H. Shinn, Fuel, 63, 1187 (1984); doi:10.1016/0016-2361(84)90422-8.
- J.P. Mathews, A.C.T. van Duin and A.L. Chaffee, Fuel Process. Technol., 92, 718 (2011); doi:10.1016/j.fuproc.2010.05.037.
- P. Larkin, Infrared and Raman Spectroscopy, Elsevier Inc: Amsterdam, Vol. 1, pp. 1-5 (2011).
References
K. Benfell, B.B. Beamish and K.A. Rodgers, Thermochim. Acta, 298, 119 (1997); doi: 10.1016/S0040-6031(97)00142-1.
D.L. Carpenter and D.S. Giddings, Fuel, 43, 247 (1964).
H. Wang, B.Z. Dlugogorski and E.M. Kennedy, Fuel, 81, 1913 (2002); doi:10.1016/S0016-2361(02)00122-9.
J.D. Davis and J.F. Byrne, J. Am. Ceram. Soc., 7, 809 (1924); doi:10.1111/j.1151-2916.1924.tb18175.x.
Y. Tang, Z. Li and Y. Yang, Asian J. Chem., 25, 441 (2013);doi:10.14233/ajchem.2013.13151.
D.M. Wang, Mine fire. Xuzhou: China University of Mining and Technology Press, pp. 45-51 (2006).
Y. Tang, Z. Li and Y. Yang, Asian J. Chem., 25, 3384 (2013); doi:10.14233/ajchem.2013.13803.
J.N. Carras and B.C. Young, Progr. Energy Combust. Sci., 20, 1 (1994); doi:10.1016/0360-1285(94)90004-3.
J.J. Pis, G. de la Puente, E. Fuente, A. Morán and F. Rubiera, Thermochim. Acta, 279, 93 (1996); doi:10.1016/S0040-6031(96)90066-0.
J.C. Jones, K.P. Henderson, J. Littlefair and S. Rennie, Fuel, 77, 19 (1998); doi:10.1016/S0016-2361(97)00155-5.
B.B. Beamish, M.A. Barakat and J.D. St. George, Int. J. Coal Geol., 45, 217 (2001); doi:10.1016/S0166-5162(00)00034-3.
M. Trewhella and A. Grint, Fuel, 67, 1135 (1988); doi:10.1016/0016-2361(88)90383-3.
X. Wei, E. Ogata, Z. Zong, S. Zhou, Z. Qin, J. Liu, K. Shen and H. Li, Fuel Process. Technol., 62, 103 (2000).
P. Yi, J. Liu and H. Zhao, Coal Conversion, 20, 27 (1997).
I. Mochida, K. Sakata, K. Maeda, H. Fujitsu and K. Takeshita, Fuel Process. Technol., 3, 207 (1980); doi:10.1016/0378-3820(80)90004-1.
J.W. Smith, B.D. Batts and T.D. Gilbert, Org. Geochem., 14, 365 (1989); doi:10.1016/0146-6380(89)90002-8.
J. Wang and C. Deng, J. China Coal Society, 24, 78 (2001).
T. Shi, J. Deng and X. Wang, J. Fuel Chem.Tech., 32, 6 (2004).
Y. Tang Z. Li and D. Ma, Asian J. Chem., 25, 8660 (2013); doi:10.14233/ajchem.2013.14926.
Y. Tang Z. Li and D. Ma, Asian J. Chem., 25, 8667 (2013) doi:10.14233/ajchem.2013.13937.
J.H. Shinn, Fuel, 63, 1187 (1984); doi:10.1016/0016-2361(84)90422-8.
J.P. Mathews, A.C.T. van Duin and A.L. Chaffee, Fuel Process. Technol., 92, 718 (2011); doi:10.1016/j.fuproc.2010.05.037.
P. Larkin, Infrared and Raman Spectroscopy, Elsevier Inc: Amsterdam, Vol. 1, pp. 1-5 (2011).