Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidation of Aromatic Anils by Sodium Perborate in Aqueous Acetic Acid Medium
Corresponding Author(s) : K. Karunakaran
Asian Journal of Chemistry,
Vol. 26 No. 3 (2014): Vol 26 Issue 3
Abstract
The kinetics of oxidation of 9 meta- and 15 para- substituted aromatic anils by sodium perborate were investigated in aqueous acetic acid medium. The reaction was second order with respect to aromatic anil and first order with respect to the sodium perborate. The increase of [H+] in this oxidation retards the rate of the reaction. The observed rate constant for the substituents were plotted against the Hammett constant, s and a non-linear concave downward curve was obtained for the anils with substituents in the aniline moiety. The observed break in the log kobs versus s was attributed to the transition state whereas the non-linear concave upward curve was observed for the substituents in the benzaldehyde moiety and a non-linear concave upward curve was observed for the substituents in the combination of aniline and benzaldehyde moiety. The electron withdrawing substituents fall on one side of the curve, having a negative r value and the electron releasing substituents fall on the other side, with a positive r value and a suitable mechanism was proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, p. 172 (1988).
- M. Raja, K. Karunakaran, Asian J. Chem., 25, 4404 (2013);doi: 10.14233/ajchem.2013.13996.
- C. Karunakaran, V. Ramachandran and P.N. Palanisamy, Int. J. Chem. Kinet., 31, 675 (1999); doi:10.1002/(SICI)1097-4601(1999)31:9<675::AID-KIN8>3.0.CO;2-H.
- C. Karunakaran and R. Kamalam, Synth. React. Inorg. Met.-Org. Chem, 29, 1463 (1999); doi:10.1080/00945719909351711.
- C. Karunakaran and P.N. Palanisamy, Synth. React. Inorg. Met.-Org. Chem, 28, 1115 (1998); doi:10.1080/00945719809349393.
- C. Karunakaran and B. Muthukumaran, React. Kinet. Catal. Lett., 60, 387 (1997); doi:10.1007/BF02475703.
- C. Karunakaran and B. Muthukumaran, Transition Met. Chem., 20, 460 (1995); doi:10.1007/BF00141517.
- A. McKillop and W.R. Sanderson, J. Chem. Soc. Perkin Trans. I, 471 (2000); doi:10.1039/a804579h.
- A. McKillop and W.R. Sanderson, Tetrahedron, 51, 6145 (1995); doi:10.1016/0040-4020(95)00304-Q.
- J. Muzart, Synthesis, 1325 (1995); doi:10.1055/s-1995-4128.
- Y. Ogata and H. Shimizu, Bull. Chem. Soc. Jpn., 52, 635 (1979); doi:10.1246/bcsj.52.635.
- S.M. Mehta and M.V. Vakilwala, J. Am. Chem. Soc., 74, 563 (1952); doi:10.1021/ja01122a514.
- C.F.H. Allen and J.H. Clark, J. Chem. Educ., 9, 72 (1932); doi:10.1021/ed009p72.
- D.S. Matteson and R.J. Moody, J. Org. Chem., 45, 1091 (1980); doi:10.1021/jo01294a033.
- L. Huestis, J. Chem. Educ., 54, 327 (1977); doi:10.1021/ed054p327.
- A. McKillop and J. A. Tarbin, Tetrahedron Lett., 24, 1505 (1983); doi:10.1016/S0040-4039(00)81693-7.
- A. Rashid and G. Read, J. Chem. Soc., 1323 (1967);doi:10.1039/J39670001323.
- G. Ramalingam and S. Jayanthi, Transition Met. Chem., 32, 475 (2007); doi:10.1007/s11243-007-0190-x.
- C. Karunakaran and R. Kamalam, J. Chem. Soc. Perkin Trans. II, 2011 (2002); doi:10.1039/b208199g.
- G. Chandramohan, S. Kalyanasundharam and R. Renganathan, Int. J. Chem. Kinet., 34, 569 (2002); doi:10.1002/kin.10060.
- G. Karthikeyan, K.P. Elango, K. Karunakaran and A. Balasubramanian, Oxid. Commun., 21, 51 (1998).
- G. Karthikeyan, K.P. Elango and K. Karunakaran, J. Indian Chem. Soc., 74, 798 (1997).
- L.P. Hammett, J. Am. Chem. Soc., 59, 96 (1937); doi:10.1021/ja01280a022.
- J. Hoffmann, J. Klicnar, V. Sterba and M. Vecera Coll, Chem. Commun., 35, 1387 (1970).
- 25 T.M. Nenoff, M.C. Showalter and K.A. Salaz, J. Mol. Catal. Chem., 121, 123 (1997); doi:10.1016/S1381-1169(96)00458-X
- C. Karunakaran and P.N. Palanisamy, Gazz. Chim. Ital., 127, 559 (1997).
- D.S. Bhuvaneshwari and K.P. Elango, Z. Phys. Chem., 220, 697 (2006); doi:10.1524/zpch.2006.220.6.697.
- 28 C. Hansch, A. Leo and R.W. Taft, Chem. Rev., 91, 165 (1991); doi:10.1021/cr00002a004.
- 29. D.S. Bhuvaneshwari and K.P. Elango, Int. J. Chem. Kinet., 38, 657 (2006); doi:10.1002/kin.20199.
- 30. D.S. Bhuvaneshwari and K.P. Elango, Z. Phys. Chem., 220, 697 (2006); doi:10.1524/zpch.2006.220.6.697.
- 31. C. Karunakaran and P.N. Palanisamy, Org. React., 31, 51 (1997).
References
F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, p. 172 (1988).
M. Raja, K. Karunakaran, Asian J. Chem., 25, 4404 (2013);doi: 10.14233/ajchem.2013.13996.
C. Karunakaran, V. Ramachandran and P.N. Palanisamy, Int. J. Chem. Kinet., 31, 675 (1999); doi:10.1002/(SICI)1097-4601(1999)31:9<675::AID-KIN8>3.0.CO;2-H.
C. Karunakaran and R. Kamalam, Synth. React. Inorg. Met.-Org. Chem, 29, 1463 (1999); doi:10.1080/00945719909351711.
C. Karunakaran and P.N. Palanisamy, Synth. React. Inorg. Met.-Org. Chem, 28, 1115 (1998); doi:10.1080/00945719809349393.
C. Karunakaran and B. Muthukumaran, React. Kinet. Catal. Lett., 60, 387 (1997); doi:10.1007/BF02475703.
C. Karunakaran and B. Muthukumaran, Transition Met. Chem., 20, 460 (1995); doi:10.1007/BF00141517.
A. McKillop and W.R. Sanderson, J. Chem. Soc. Perkin Trans. I, 471 (2000); doi:10.1039/a804579h.
A. McKillop and W.R. Sanderson, Tetrahedron, 51, 6145 (1995); doi:10.1016/0040-4020(95)00304-Q.
J. Muzart, Synthesis, 1325 (1995); doi:10.1055/s-1995-4128.
Y. Ogata and H. Shimizu, Bull. Chem. Soc. Jpn., 52, 635 (1979); doi:10.1246/bcsj.52.635.
S.M. Mehta and M.V. Vakilwala, J. Am. Chem. Soc., 74, 563 (1952); doi:10.1021/ja01122a514.
C.F.H. Allen and J.H. Clark, J. Chem. Educ., 9, 72 (1932); doi:10.1021/ed009p72.
D.S. Matteson and R.J. Moody, J. Org. Chem., 45, 1091 (1980); doi:10.1021/jo01294a033.
L. Huestis, J. Chem. Educ., 54, 327 (1977); doi:10.1021/ed054p327.
A. McKillop and J. A. Tarbin, Tetrahedron Lett., 24, 1505 (1983); doi:10.1016/S0040-4039(00)81693-7.
A. Rashid and G. Read, J. Chem. Soc., 1323 (1967);doi:10.1039/J39670001323.
G. Ramalingam and S. Jayanthi, Transition Met. Chem., 32, 475 (2007); doi:10.1007/s11243-007-0190-x.
C. Karunakaran and R. Kamalam, J. Chem. Soc. Perkin Trans. II, 2011 (2002); doi:10.1039/b208199g.
G. Chandramohan, S. Kalyanasundharam and R. Renganathan, Int. J. Chem. Kinet., 34, 569 (2002); doi:10.1002/kin.10060.
G. Karthikeyan, K.P. Elango, K. Karunakaran and A. Balasubramanian, Oxid. Commun., 21, 51 (1998).
G. Karthikeyan, K.P. Elango and K. Karunakaran, J. Indian Chem. Soc., 74, 798 (1997).
L.P. Hammett, J. Am. Chem. Soc., 59, 96 (1937); doi:10.1021/ja01280a022.
J. Hoffmann, J. Klicnar, V. Sterba and M. Vecera Coll, Chem. Commun., 35, 1387 (1970).
25 T.M. Nenoff, M.C. Showalter and K.A. Salaz, J. Mol. Catal. Chem., 121, 123 (1997); doi:10.1016/S1381-1169(96)00458-X
C. Karunakaran and P.N. Palanisamy, Gazz. Chim. Ital., 127, 559 (1997).
D.S. Bhuvaneshwari and K.P. Elango, Z. Phys. Chem., 220, 697 (2006); doi:10.1524/zpch.2006.220.6.697.
28 C. Hansch, A. Leo and R.W. Taft, Chem. Rev., 91, 165 (1991); doi:10.1021/cr00002a004.
29. D.S. Bhuvaneshwari and K.P. Elango, Int. J. Chem. Kinet., 38, 657 (2006); doi:10.1002/kin.20199.
30. D.S. Bhuvaneshwari and K.P. Elango, Z. Phys. Chem., 220, 697 (2006); doi:10.1524/zpch.2006.220.6.697.
31. C. Karunakaran and P.N. Palanisamy, Org. React., 31, 51 (1997).