Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Different Influent Flow Distribution Ratios on Multistage A/O Process for Removal of Carbon and Nitrogen
Corresponding Author(s) : Jieyun Chen
Asian Journal of Chemistry,
Vol. 26 No. 3 (2014): Vol 26 Issue 3
Abstract
Three-stage step-feed A/O system was applied to treat sewage with low carbon source. The removal of organic matter, nitrification and denitrification removal efficiency under different influent flow rate distribution ratios were discussed. It was showed that different flow distribution ratios (4:3:3; 5:3:2; 6:3:1) had a little effect on organic matter removal and nitrification efficiency, COD, NH3-N of effluent were below 30 and 1.0 mg/L, respectively, by monitoring water quality along the reactor, but denitrification efficiency was considerably affected. When flow distribution ratio was 5:3:2, carbon source of sewage was effectively used and the system achieved the optimum efficiency of nitrification. When flow distribution ratio was 5:3:2, the effluent total nitrogen was 5.7 mg/L and removal ratio of total nitrogen was 82.9 %, which was better than the nitrogen removal efficiency under the flow distribution ratios of 6:3:1 and 4:3:3. In summary, the step-feed system is superior to single point feed system in the aspect of effectively usage of carbon sources and energy saving.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Hvala, M. Zec, M. Ros and S. Strmčnik, Water Environ. Res., 73, 146 (2001); doi:10.2175/106143001X138804.
- S. Fujii, Water Sci. Technol., 34, 459 (1996); doi:10.1016/0273-1223(96)00535-5.
- S.C. Qiu and T.T. Ding, China Water Wastewater, 19, 32 (2003).
- S. Zhang and J.R. Zhu, Environ. Pollut. Control, 29, 533 (2007).
- WANG Rongbin, LI Jun, Chinese J. Environ. Eng., 25, 84 (2007).
- F. Fdz-Polanco, E. Méndez, M.A. Urueña, S. Villaverde and P.A. García, Water Res., 34, 4081 (2000); doi:10.1016/S0043-1354(00)00159-7.
- 7 C. deBarbadillo, L. Carrio, K. Mahoney, J. Anderson, N. Passarelli, F. Streett and K. Abraham, Florida Water Resour. J., 18-20, 33 (2002).
- G. Olsson, M. Nielsen, Z. Yuan, A. Lynggaard-Jensen and J.-P. Steyer, Instrumentation, Control and Automation in Wastewater Systems, IWA Publishing, London (2005).
- B.R. Johnson, S. Goodwin, G.T. Daigger and G.V. Crawford, Water Sci. Technol., 52, 587 (2005).
- E. Gorgun, E. Artan, D. Orhon and S. Sozen, Water Sci. Technol., 34, 253 (1996); doi:10.1016/0273-1223(96)00516-1.
- F. Shi, S.J. Liu, B.Y. Ma, X.F. Zheng, X. Yang, Z.X. Zou, J.W. Zhang and K.Z. Sun, Water Wastewater Eng., 37, 34 (2011).
- M. Henze and P. Harremoës, Chemical Water and Wastewater Treatment, 299 (1992).
- K.A. Third, N. Burnett and R. Cord-Ruwisch, Biotechnol. Bioeng., 83, 706 (2003); doi:10.1002/bit.10708.
- K. Pochana and J. Keller, Water Sci. Technol., 39, 61 (1999); doi:10.1016/S0273-1223(99)00123-7.
- W. Sheping, Xi'an Fourth Sewage Plant Influent Water Quality Analysis and sub-A/O Biological Nitrogen Removal Process, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an (2006).
- G.B. Zhu, Y.Z. Peng, S.Y. Wu, S.Y. Wang and S.W. Xu, J. Environ. Sci., 19, 1043 (2007);doi: 10.1016/S1001-0742(07)60170-3.
- N. Puznava, M. Payraudeau and D. Thornberg, Water Sci. Technol., 43, 269 (2000).
- H.X. Littleton, G.T. Daigger, P.F. Strom and R.M. Cowan, Water Sci. Technol., 46, 305 (2002).
References
N. Hvala, M. Zec, M. Ros and S. Strmčnik, Water Environ. Res., 73, 146 (2001); doi:10.2175/106143001X138804.
S. Fujii, Water Sci. Technol., 34, 459 (1996); doi:10.1016/0273-1223(96)00535-5.
S.C. Qiu and T.T. Ding, China Water Wastewater, 19, 32 (2003).
S. Zhang and J.R. Zhu, Environ. Pollut. Control, 29, 533 (2007).
WANG Rongbin, LI Jun, Chinese J. Environ. Eng., 25, 84 (2007).
F. Fdz-Polanco, E. Méndez, M.A. Urueña, S. Villaverde and P.A. García, Water Res., 34, 4081 (2000); doi:10.1016/S0043-1354(00)00159-7.
7 C. deBarbadillo, L. Carrio, K. Mahoney, J. Anderson, N. Passarelli, F. Streett and K. Abraham, Florida Water Resour. J., 18-20, 33 (2002).
G. Olsson, M. Nielsen, Z. Yuan, A. Lynggaard-Jensen and J.-P. Steyer, Instrumentation, Control and Automation in Wastewater Systems, IWA Publishing, London (2005).
B.R. Johnson, S. Goodwin, G.T. Daigger and G.V. Crawford, Water Sci. Technol., 52, 587 (2005).
E. Gorgun, E. Artan, D. Orhon and S. Sozen, Water Sci. Technol., 34, 253 (1996); doi:10.1016/0273-1223(96)00516-1.
F. Shi, S.J. Liu, B.Y. Ma, X.F. Zheng, X. Yang, Z.X. Zou, J.W. Zhang and K.Z. Sun, Water Wastewater Eng., 37, 34 (2011).
M. Henze and P. Harremoës, Chemical Water and Wastewater Treatment, 299 (1992).
K.A. Third, N. Burnett and R. Cord-Ruwisch, Biotechnol. Bioeng., 83, 706 (2003); doi:10.1002/bit.10708.
K. Pochana and J. Keller, Water Sci. Technol., 39, 61 (1999); doi:10.1016/S0273-1223(99)00123-7.
W. Sheping, Xi'an Fourth Sewage Plant Influent Water Quality Analysis and sub-A/O Biological Nitrogen Removal Process, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an (2006).
G.B. Zhu, Y.Z. Peng, S.Y. Wu, S.Y. Wang and S.W. Xu, J. Environ. Sci., 19, 1043 (2007);doi: 10.1016/S1001-0742(07)60170-3.
N. Puznava, M. Payraudeau and D. Thornberg, Water Sci. Technol., 43, 269 (2000).
H.X. Littleton, G.T. Daigger, P.F. Strom and R.M. Cowan, Water Sci. Technol., 46, 305 (2002).