Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Pb2+ from Aqueous Solutions by Rice Hull Adsorbent Modified with Citric Acid Anhydride
Asian Journal of Chemistry,
Vol. 26 No. 2 (2014): Vol 26 Issue 2
Abstract
Rice hull was chemically modified by reacting with citric acid anhydride after microwave pretreatment to prepare carboxylate functionalized rice hull adsorbent for removal of Pb2+ from aqueous solutions. The preparing conditions were optimized in this study. And the effects of carboxylate functionalized rice hull dosage, pH, contact time and initial Pb2+ concentration in aqueous solutions on the removal efficiency of Pb2+ from aqueous solutions was studied. The results indicated that when the initial Pb2+ concentration was 100 mg/L. The adsorption capacity of carboxylate functionalized rice hull was high effective with the carboxylate functionalized rice hull dose was 8 g/L, pH was 4.5 and the contact time was 100 min at room temperature. The equilibrium adsorption capacity of carboxylate functionalized rice hull was 11.45 mg/g and the removal rate of Pb2+ was 91.60 %. All the results indicated that the carboxylate functionalized rice hull was a effective adsorbent for removal of Pb2+ form aqueous solutions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Baath, Water Air Soil Pollut., 47, 335 (1989); doi:10.1007/BF00279331.
- F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); doi:10.1016/j.jenvman.2010.11.011.
- M. Masrournia, Asian J.Chem., 25, 3867 (2013).
- X. Hu, M. Zhao and H. Huang, Water Environ. Res., 82, 733 (2010); doi:10.2175/106143009X12529484816150.
- W.S. Wan Ngah and M.A.K.M. Hanafiah, Bioresour. Technol., 99, 3935 (2008); doi:10.1016/j.biortech.2007.06.011.
- A. Gholizadeh, M. Kermani, M. Gholami, M. Farzadkia and K. Yaghmaeian, Asian J. Chem., 25, 3871 (2013).
- A. Demirbas, J. Hazard. Mater., 157, 220 (2008); doi:10.1016/j.jhazmat.2008.01.024.
- A.H. Vyas, S. Jauhari and Z.V.P. Murthy, J. Dispersion Sci. Technology, 34, 369 (2013); doi:10.1080/01932691.2012.667719.
References
E. Baath, Water Air Soil Pollut., 47, 335 (1989); doi:10.1007/BF00279331.
F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); doi:10.1016/j.jenvman.2010.11.011.
M. Masrournia, Asian J.Chem., 25, 3867 (2013).
X. Hu, M. Zhao and H. Huang, Water Environ. Res., 82, 733 (2010); doi:10.2175/106143009X12529484816150.
W.S. Wan Ngah and M.A.K.M. Hanafiah, Bioresour. Technol., 99, 3935 (2008); doi:10.1016/j.biortech.2007.06.011.
A. Gholizadeh, M. Kermani, M. Gholami, M. Farzadkia and K. Yaghmaeian, Asian J. Chem., 25, 3871 (2013).
A. Demirbas, J. Hazard. Mater., 157, 220 (2008); doi:10.1016/j.jhazmat.2008.01.024.
A.H. Vyas, S. Jauhari and Z.V.P. Murthy, J. Dispersion Sci. Technology, 34, 369 (2013); doi:10.1080/01932691.2012.667719.