Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Characterization of Porous SiO2-TiO2 Photocatalyst and the Effect of PEG1000 Concentration
Asian Journal of Chemistry,
Vol. 26 No. 2 (2014): Vol 26 Issue 2
Abstract
A porous SiO2-TiO2 photocatalyst was prepared through co-sol-gel method for photocatalytic degradation of methyl orange. PEG1000 was used as a template to induce porous structure in the material. Photocatalytic degradation was conducted after adsorption equilibrium to identify the contribution of both adsorption and photocatalytic degradation. The prepared material was composed of anatase TiO2 and amorphous SiO2. Many small particles formed during grinding also scattered on the surface. The average pore diameter is 16.89 nm and the total pore volume is 0.3644 cm3 g-1 along with specific surface area of 86.27 m2 g-1, as calculated by using BJH and BET methods. The SiO2-TiO2 composite may have the maximum photocatalytic activity and adsorption capacity using 0.04 mol/L of PEG1000 in the precursor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem.C, 1, 1 (2000); doi: 10.1016/S1389-5567(00)00002-2.
- M.I. Litter, Appl. Catal. B, 23, 89 (1999); doi:10.1016/S0926-3373(99)00069-7.
- Q.Y. Li, K. Wang, S.L. Zhang, M. Zhang, J.J. Yang and Z.S. Jin, J. Mol. Catal. A, 258, 83 (2006); doi:10.1016/j.molcata.2006.05.030.
- H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo and Y.C. Bae, J. Photochem. Photobiol. A, 163, 37 (2004); doi:10.1016/S1010-6030(03)00428-3.
- W.C. Hung, Y.C. Chen, H. Chu and T.K. Tseng, Appl. Surf. Sci., 255, 2205 (2008); doi:10.1016/j.apsusc.2008.07.079.
- J.X. Jiao, Q. Xu and L. Li, J. Colloid Interf. Sci., 316, 596 (2007); doi:10.1016/j.jcis.2007.08.056.
- B. Neppolian, Q.L. Wang, H. Yamashita and H. Choi, Appl. Catal. A, 333, 264 (2007); doi:10.1016/j.apcata.2007.09.026.
- M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard and R. Molaei, Mater. Chem. Phys., 124, 203 (2010); doi:10.1016/j.matchemphys.2010.06.020.
- X.D. Su, J.Z. Zhao, Y.L. Li, Y.C. Zhu, X.K. Ma, F. Sun and Z.C. Wang, Colloids Surf. A Physicochem. Eng. Asp., 349, 151 (2009); doi:10.1016/j.colsurfa.2009.08.011.
- M. Stodolny and M. Laniecki, Catal. Today, 142, 314 (2009); doi:10.1016/j.cattod.2008.07.034.
- W.J. Zhang, R.Y. Li and B. Yang, Nanosci. Nanotechnol.- Asia, 2, 59 (2012); doi:10.2174/2210682011202010059.
References
M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem.C, 1, 1 (2000); doi: 10.1016/S1389-5567(00)00002-2.
M.I. Litter, Appl. Catal. B, 23, 89 (1999); doi:10.1016/S0926-3373(99)00069-7.
Q.Y. Li, K. Wang, S.L. Zhang, M. Zhang, J.J. Yang and Z.S. Jin, J. Mol. Catal. A, 258, 83 (2006); doi:10.1016/j.molcata.2006.05.030.
H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo and Y.C. Bae, J. Photochem. Photobiol. A, 163, 37 (2004); doi:10.1016/S1010-6030(03)00428-3.
W.C. Hung, Y.C. Chen, H. Chu and T.K. Tseng, Appl. Surf. Sci., 255, 2205 (2008); doi:10.1016/j.apsusc.2008.07.079.
J.X. Jiao, Q. Xu and L. Li, J. Colloid Interf. Sci., 316, 596 (2007); doi:10.1016/j.jcis.2007.08.056.
B. Neppolian, Q.L. Wang, H. Yamashita and H. Choi, Appl. Catal. A, 333, 264 (2007); doi:10.1016/j.apcata.2007.09.026.
M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard and R. Molaei, Mater. Chem. Phys., 124, 203 (2010); doi:10.1016/j.matchemphys.2010.06.020.
X.D. Su, J.Z. Zhao, Y.L. Li, Y.C. Zhu, X.K. Ma, F. Sun and Z.C. Wang, Colloids Surf. A Physicochem. Eng. Asp., 349, 151 (2009); doi:10.1016/j.colsurfa.2009.08.011.
M. Stodolny and M. Laniecki, Catal. Today, 142, 314 (2009); doi:10.1016/j.cattod.2008.07.034.
W.J. Zhang, R.Y. Li and B. Yang, Nanosci. Nanotechnol.- Asia, 2, 59 (2012); doi:10.2174/2210682011202010059.