Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Online Upgrading of Bio-oil Pyrolyzed Form by Shrub Residues
Corresponding Author(s) : Haiqing Yang
Asian Journal of Chemistry,
Vol. 26 No. 1 (2014): Vol 26 Issue 1
Abstract
In this paper, the shrub residues as raw materials, were produced to upgraded bio-oil by fast pyrolysis technology and online catalytic cracking in a 5 kg/h fluidized-bed reactor. The quality of upgraded bio-oil was significantly improved after online catalytic cracking, the oxygen content was 31.83 %, the water content was 22.15 % and the liquid yield was 43.42 % after online catalytic cracking (500 °C). After online catalytic cracking, the content of organic acids decreased to 3.3 %, the content of phenols increased to 40.10 % and the content of one or two benzene rings compounds increased to 16.60 %. This was attributed that zeolite HZSM-5 had the catalytic reforming and cyclization functions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Asadullah, M.A. Rahman, M.M. Ali, M.S. Rahman, M.A. Motin, M.B. Sultan and M.R. Alam, Fuel, 86, 2514 (2007); doi:10.1016/j.fuel.2007.02.007.
- A.A. Boateng, D.E. Daugaard, N.M. Goldberg and K.B. Hicks, Ind. Eng. Chem. Res., 46, 1891 (2007); doi:10.1021/ie0614529.
- H.S. Heo, H.J. Park, Y.K. Park, C. Ryu, D.J. Suh, Y.W. Suh, J.H. Yim and S.S. Kim, Bioresour. Technol., 101, S91 (2010); doi:10.1016/j.biortech.2009.06.003.
- A. Oasmaa, Y. Solantausta, V. Arpiainen, E. Kuoppala and K. Sipila, Energy Fuels, 24, 1380 (2010); doi:10.1021/ef901107f.
- T. Tzanetakis, N. Ashgriz, D. James and M.J. Thomson, Energy Fuels, 22, 2725 (2008); doi:10.1021/ef7007425.
- R.H. Venderbosch and W. Prins, Bioprod. Bioresour., 4, 178 (2010); doi:10.1002/bbb.205.
- J. Lédé, F. Broust, F.T. Ndiaye and M. Ferrer, Fuel, 86, 1800 (2007); doi:10.1016/j.fuel.2006.12.024.
- F. Huang, W. Li, Q. Lu and X. Zhu, Chem. Eng. Technol., 33, 2082 (2010); doi:10.1002/ceat.201000229.
- Y. Xu, T. Wang, L. Ma, Q. Zhang and L. Wang, Biomass Bioenergy, 33, 1030 (2009); doi:10.1016/j.biombioe.2009.03.002.
- S. Vitolo, M. Seggiani, P. Frediani, G. Ambrosini and L. Politi, Fuel, 78, 1147 (1999); doi:10.1016/S0016-2361(99)00045-9.
- P.T. Williams and N. Nugranad, Energy, 25, 493 (2000); doi:10.1016/S0360-5442(00)00009-8.
- S.T. Srinivas, A.K. Dalai and N.N. Bakhshi, Can. J. Chem. Eng., 78, 343 (2000); doi:10.1002/cjce.5450780209.
- X. Guo, Y. Yan, T. Li and Z. Ren, J. East China Univer. Sci. Technol., 29, 534 (2003).
References
M. Asadullah, M.A. Rahman, M.M. Ali, M.S. Rahman, M.A. Motin, M.B. Sultan and M.R. Alam, Fuel, 86, 2514 (2007); doi:10.1016/j.fuel.2007.02.007.
A.A. Boateng, D.E. Daugaard, N.M. Goldberg and K.B. Hicks, Ind. Eng. Chem. Res., 46, 1891 (2007); doi:10.1021/ie0614529.
H.S. Heo, H.J. Park, Y.K. Park, C. Ryu, D.J. Suh, Y.W. Suh, J.H. Yim and S.S. Kim, Bioresour. Technol., 101, S91 (2010); doi:10.1016/j.biortech.2009.06.003.
A. Oasmaa, Y. Solantausta, V. Arpiainen, E. Kuoppala and K. Sipila, Energy Fuels, 24, 1380 (2010); doi:10.1021/ef901107f.
T. Tzanetakis, N. Ashgriz, D. James and M.J. Thomson, Energy Fuels, 22, 2725 (2008); doi:10.1021/ef7007425.
R.H. Venderbosch and W. Prins, Bioprod. Bioresour., 4, 178 (2010); doi:10.1002/bbb.205.
J. Lédé, F. Broust, F.T. Ndiaye and M. Ferrer, Fuel, 86, 1800 (2007); doi:10.1016/j.fuel.2006.12.024.
F. Huang, W. Li, Q. Lu and X. Zhu, Chem. Eng. Technol., 33, 2082 (2010); doi:10.1002/ceat.201000229.
Y. Xu, T. Wang, L. Ma, Q. Zhang and L. Wang, Biomass Bioenergy, 33, 1030 (2009); doi:10.1016/j.biombioe.2009.03.002.
S. Vitolo, M. Seggiani, P. Frediani, G. Ambrosini and L. Politi, Fuel, 78, 1147 (1999); doi:10.1016/S0016-2361(99)00045-9.
P.T. Williams and N. Nugranad, Energy, 25, 493 (2000); doi:10.1016/S0360-5442(00)00009-8.
S.T. Srinivas, A.K. Dalai and N.N. Bakhshi, Can. J. Chem. Eng., 78, 343 (2000); doi:10.1002/cjce.5450780209.
X. Guo, Y. Yan, T. Li and Z. Ren, J. East China Univer. Sci. Technol., 29, 534 (2003).