Issue
Copyright (c) 2014 Xinquan Liang1, Xianhui Liang1, Huihuan He2, Jidong Liu1, Dengjun Lu1
This work is licensed under a Creative Commons Attribution 4.0 International License.
Determination of Monomer Phenols in Cane Juice by Reversed-Phase High-Performance Liquid Chromatography with UV Detection
Corresponding Author(s) : Xinquan Liang1
Asian Journal of Chemistry,
Vol. 26 No. 23 (2014)
Abstract
A reversed phase high-performance liquid chromatography method was used in simultaneous determination of 6 monomer phenols (e.g., gallic acid, catechin, chlorogenic acid, caffeic acid, epicatechin and ferulic acid) in cane juice. A variable wavelength UV detector and a C18 column (250 mm × 4.6 mm 5 μm) were used. The mixture of methanol, acetic acid and water were used as the mobile phase in a gradient mode. Five monomer phenols (gallic acid, chlorogenic acid, caffeic acid, epicatechin and ferulic acid) were detected in cane juice with an average recovery ratio of 81.6-93.7 % and the relative standard deviations (RSD) were less than 5 %. This method is a convenient, rapid and accurate way for simultaneous determination of monomer phenols in cane juice.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.K. Sharma, B. Kaushal and P. Sharma, J. Food Sci. Technol. Mysore, 48, 296 (2011).
- J.R. Jeon, E.J. Kim, K. Murugesan, H.K. Park, Y.M. Kim, J.H. Kwon, W.G. Kim, J.Y. Lee and Y.S. Chang, Microb. Biotechnol., 3, 324 (2010).
- B. Payet, A. Shum Cheong Sing and J. Smadja, J. Agric. Food Chem., 53, 10074 (2005).
- J. Maurício Duarte-Almeida, A.V. Novoa, A.F. Linares, F.M. Lajolo and M. Inés Genovese, Plant Foods Hum. Nutr., 61, 187 (2006).
- M.S.A. Moraes, F. Georges, S.R. Almeida, F.C. Damasceno, G.P.S. Maciel, C.A. Zini, R.A. Jacques and E.B. Caramão, Fuel Process. Technol., 101, 35 (2012).
- F.Y. Chen, D.D. Jiang and Y.B. Tang, Appl. Mech. Mater., 253, 914 (2013).
- J.M. Duarte-Almeida, A. Salatino, M.I. Genovese and F.M. Lajolo, Food Chem., 125, 660 (2011).
- J.P. Anjos, M.G. Cardoso, A.A. Saczk, H.S. Dórea, W.D. Santiago, A.M.R. Machado, L.M. Zacaroni and D.L. Nelson, J. Braz. Chem. Soc., 22, 1307 (2011).
- A. Caro and A. Piga, Eur. Food Res. Technol., 226, 715 (2008).
References
S.K. Sharma, B. Kaushal and P. Sharma, J. Food Sci. Technol. Mysore, 48, 296 (2011).
J.R. Jeon, E.J. Kim, K. Murugesan, H.K. Park, Y.M. Kim, J.H. Kwon, W.G. Kim, J.Y. Lee and Y.S. Chang, Microb. Biotechnol., 3, 324 (2010).
B. Payet, A. Shum Cheong Sing and J. Smadja, J. Agric. Food Chem., 53, 10074 (2005).
J. Maurício Duarte-Almeida, A.V. Novoa, A.F. Linares, F.M. Lajolo and M. Inés Genovese, Plant Foods Hum. Nutr., 61, 187 (2006).
M.S.A. Moraes, F. Georges, S.R. Almeida, F.C. Damasceno, G.P.S. Maciel, C.A. Zini, R.A. Jacques and E.B. Caramão, Fuel Process. Technol., 101, 35 (2012).
F.Y. Chen, D.D. Jiang and Y.B. Tang, Appl. Mech. Mater., 253, 914 (2013).
J.M. Duarte-Almeida, A. Salatino, M.I. Genovese and F.M. Lajolo, Food Chem., 125, 660 (2011).
J.P. Anjos, M.G. Cardoso, A.A. Saczk, H.S. Dórea, W.D. Santiago, A.M.R. Machado, L.M. Zacaroni and D.L. Nelson, J. Braz. Chem. Soc., 22, 1307 (2011).
A. Caro and A. Piga, Eur. Food Res. Technol., 226, 715 (2008).