Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Why Does Inulin have Pharmacological Activity? Theoretical Research by DFT and Concept DFT Methods
Corresponding Author(s) : Wei Long
Asian Journal of Chemistry,
Vol. 26 No. 22 (2014): Vol 26 Issue 22
Abstract
The geometric structure optimization, frequency analysis, infrared spectroscopy, natural charge population, the natural bond orbital (NBO) analysis, the molecular and the frontier orbital energy are calculated about glucose, pyran-fructose, furfuran-fructose and inulin molecule by using density functional theory (DFT) method in B3LYP on the 6-311+g(d,p) basis set level. It is shown the stability order is: furfuran-fructose > pyran-fructose > glucose > inulin. We find that inulin's chemical potential is maximum, the chemical hardness is minimum and the electrophilicity index is maximum using the concept DFT method, which could account for it's pharmacological activity. The Fukui function scanning has shown the C2 atom in inulin molecule has strong electron-losing ability and it is the active center in the molecule. The EBDE calculation has shown the position of O2-–H is the most easily broken off and the bond energy is only 94.65 kcal mol-1, which is far less than the adiabatic ionization potential value, all of that could be a reasonable theoretical interpretation for the pharmacological activity of inulin.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.Y. Zhang, L.F. Wang and Y.M. Sun, Bioorg. Med. Chem. Lett., 13, 909 (2003); doi:10.1016/S0960-894X(03)00013-1.
- J.H. Roe, J.H. Epstein and N.P. Goldstein, J. Biol. Chem., 178, 839 (1949).
- Y. Zhang, T.H. Chen and J.T. Sun, Chem. Bull., 65, 12 (1998).
- G.R. Gibson, E.R. Beatty, X. Wang and J.H. Cummings, Gastroenterology, 108, 975 (1995); doi:10.1016/0016-5085(95)90192-2.
- R.A.A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno, M. DeMarchis and M.G. Paoletti, Carbohydr. Polym., 87, 995 (2012); doi:10.1016/j.carbpol.2011.09.063.
- S. Stoyanova, J. Geuns, E. Hideg and W. Van Den Ende, Int. J. Food Sci. Nutr., 62, 207 (2011); doi:10.3109/09637486.2010.523416.
- P. Andrewes, J.L.H.C. Busch, T. de Joode, A. Groenewegen and H. Alexandre, J. Agric. Food Chem., 51, 1415 (2003); doi:10.1021/jf026042j.
- K. Seki, K. Haraguchi, M. Kishimoto, S. Kobayashi and K. Kainuma, Agric. Biol. Chem., 53, 2089 (1989); doi:10.1271/bbb1961.53.2089.
- Y.J. Zhang, Anal. Chem., 5, 167 (1977).
- Y.M. Sun, H.Y. Zhang, D.Z. Chen and C.-B. Liu, Org. Lett., 4, 2909 (2002); doi:10.1021/ol0262789.
- J. Luo, S.W. Rizkalla and C. Alamowitch, Am. J. Clin. Nutr., 96, 939 (1996).
- J.M. Laparra, E. Tako, R.P. Glahn and D.D. Miller, Food Chem., 109, 122 (2008); doi:10.1016/j.foodchem.2007.12.027.
- Z.M. Chi, T. Zhang, T.S. Cao, X.-Y. Liu, W. Cui and C.-H. Zhao, Bioresour. Technol., 102, 4295 (2011); doi:10.1016/j.biortech.2010.12.086.
- K.G. Jackson, G.R. Taylor, A.M. Clohessy and C.M. Williams, Br. J. Nutr., 82, 23 (1999); doi:10.1017/S0007114599001087.
- L.J. Pauling, J. Am. Chem. Soc., 62, 2643 (1940); doi:10.1021/ja01867a018.
- M. Azenha, P. Kathirvel, P. Nogueira and A. Fernando-Silva, Biosens. Bioelectron., 23, 1843 (2008); doi:10.1016/j.bios.2008.02.023.
- A.D. Becke, J. Chem. Phys., 97, 9173 (1992); doi:10.1063/1.463343.
- R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); doi:10.1021/ja00326a036.
- K. Fukui, J. Phys. Chem., 74, 4161 (1970); doi:10.1021/j100717a029.
- M.P. Andersson and P. Uvdal, J. Phys. Chem. A, 109, 2937 (2005); doi:10.1021/jp045733a.
- A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); doi:10.1021/jp960976r.
- M. Szafran, A. Komasa and E. Bartoszak-Adamska, J. Mol. Struct., 827, 101 (2007); doi:10.1016/j.molstruc.2006.05.012.
- B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 157, 200 (1989); doi:10.1016/0009-2614(89)87234-3.
- Y. Li and J.N.S. Evans, J. Am. Chem. Soc., 117, 7756 (1995); doi:10.1021/ja00134a021.
- R.G. Pearson, Chemical Hardness, Structure and Bonding, Springer-Verlag: Berlin (1993).
- S.B. Liu, Acta Phys. Chim. Sin., 25, 590 (2009).
- T. Head-Gordon, M. Head-Gordon, M.J. Frisch, C.L. Brooks and J.A. Pople, J. Am. Chem. Soc., 113, 5989 (1991); doi:10.1021/ja00016a010.
- R.B. Ammar, W. Bhouri, M.B. Sghaier, J. Boubaker, I. Skandrani, A. Neffati, I. Bouhlel, S. Kilani, A.-M. Mariotte, L. Chekir-Ghedira, M.-G. Dijoux-Franca and K. Ghedira, Food Chem., 116, 258 (2009); doi:10.1016/j.foodchem.2009.02.043.
- M.J. Frisch, G.W. Trucks and H.B. Schlegel, Gaussian03, Revision D.02; Gaussian, Inc.: Pittsburgh, PA (2003).
- T. Lu and F.W. Chen, J. Comput. Chem., 33, 580 (2012); doi:10.1002/jcc.22885.
- L. Santiago-Rodríguez, M.M. Lafontaine, C. Castro, J. Méndez-Vega, M. Latorre-Esteves, E.J. Juan, E. Mora, M. Torres-Lugo and C. Rinaldi, J. Mater. Chem. B., 1, 2807 (2013); doi:10.1039/c3tb20256a.
- K.D.O. Vigier, A. Benguerba, A. Barrault and F. Jérôme, J. Green Chem., 14, 285 (2012); doi:10.1039/c1gc16236e.
- F. Russo, C. Clemente, M. Linsalata, M. Chiloiro, A. Orlando, E. Marconi, G. Chimienti and G. Riezzo, Eur. J. Nutr., 50, 271 (2011); doi:10.1007/s00394-010-0135-6.
- Y. Ruiz-Morales, J. Phys. Chem. A, 106, 11283 (2002); doi:10.1021/jp021152e.
- P. Geerlings, F. Deproft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); doi:10.1021/cr990029p.
- E.M. Dewulf, P.D. Cani, A.M. Neyrinck, S. Possemiers, A.V. Holle, G.G. Muccioli, L. Deldicque, L.B. Bindels, B.D. Pachikian, F.M. Sohet, E. Mignolet, M. Francaux, Y. Larondelle and N.M. Delzenne, J. Nutr. Biochem., 22, 712 (2011); doi:10.1016/j.jnutbio.2010.05.009.
- B.S. Reddy, R. Hamid and C.V. Rao, Carcinogenesis, 18, 1371 (1997); doi:10.1093/carcin/18.7.1371.
References
H.Y. Zhang, L.F. Wang and Y.M. Sun, Bioorg. Med. Chem. Lett., 13, 909 (2003); doi:10.1016/S0960-894X(03)00013-1.
J.H. Roe, J.H. Epstein and N.P. Goldstein, J. Biol. Chem., 178, 839 (1949).
Y. Zhang, T.H. Chen and J.T. Sun, Chem. Bull., 65, 12 (1998).
G.R. Gibson, E.R. Beatty, X. Wang and J.H. Cummings, Gastroenterology, 108, 975 (1995); doi:10.1016/0016-5085(95)90192-2.
R.A.A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno, M. DeMarchis and M.G. Paoletti, Carbohydr. Polym., 87, 995 (2012); doi:10.1016/j.carbpol.2011.09.063.
S. Stoyanova, J. Geuns, E. Hideg and W. Van Den Ende, Int. J. Food Sci. Nutr., 62, 207 (2011); doi:10.3109/09637486.2010.523416.
P. Andrewes, J.L.H.C. Busch, T. de Joode, A. Groenewegen and H. Alexandre, J. Agric. Food Chem., 51, 1415 (2003); doi:10.1021/jf026042j.
K. Seki, K. Haraguchi, M. Kishimoto, S. Kobayashi and K. Kainuma, Agric. Biol. Chem., 53, 2089 (1989); doi:10.1271/bbb1961.53.2089.
Y.J. Zhang, Anal. Chem., 5, 167 (1977).
Y.M. Sun, H.Y. Zhang, D.Z. Chen and C.-B. Liu, Org. Lett., 4, 2909 (2002); doi:10.1021/ol0262789.
J. Luo, S.W. Rizkalla and C. Alamowitch, Am. J. Clin. Nutr., 96, 939 (1996).
J.M. Laparra, E. Tako, R.P. Glahn and D.D. Miller, Food Chem., 109, 122 (2008); doi:10.1016/j.foodchem.2007.12.027.
Z.M. Chi, T. Zhang, T.S. Cao, X.-Y. Liu, W. Cui and C.-H. Zhao, Bioresour. Technol., 102, 4295 (2011); doi:10.1016/j.biortech.2010.12.086.
K.G. Jackson, G.R. Taylor, A.M. Clohessy and C.M. Williams, Br. J. Nutr., 82, 23 (1999); doi:10.1017/S0007114599001087.
L.J. Pauling, J. Am. Chem. Soc., 62, 2643 (1940); doi:10.1021/ja01867a018.
M. Azenha, P. Kathirvel, P. Nogueira and A. Fernando-Silva, Biosens. Bioelectron., 23, 1843 (2008); doi:10.1016/j.bios.2008.02.023.
A.D. Becke, J. Chem. Phys., 97, 9173 (1992); doi:10.1063/1.463343.
R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); doi:10.1021/ja00326a036.
K. Fukui, J. Phys. Chem., 74, 4161 (1970); doi:10.1021/j100717a029.
M.P. Andersson and P. Uvdal, J. Phys. Chem. A, 109, 2937 (2005); doi:10.1021/jp045733a.
A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); doi:10.1021/jp960976r.
M. Szafran, A. Komasa and E. Bartoszak-Adamska, J. Mol. Struct., 827, 101 (2007); doi:10.1016/j.molstruc.2006.05.012.
B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 157, 200 (1989); doi:10.1016/0009-2614(89)87234-3.
Y. Li and J.N.S. Evans, J. Am. Chem. Soc., 117, 7756 (1995); doi:10.1021/ja00134a021.
R.G. Pearson, Chemical Hardness, Structure and Bonding, Springer-Verlag: Berlin (1993).
S.B. Liu, Acta Phys. Chim. Sin., 25, 590 (2009).
T. Head-Gordon, M. Head-Gordon, M.J. Frisch, C.L. Brooks and J.A. Pople, J. Am. Chem. Soc., 113, 5989 (1991); doi:10.1021/ja00016a010.
R.B. Ammar, W. Bhouri, M.B. Sghaier, J. Boubaker, I. Skandrani, A. Neffati, I. Bouhlel, S. Kilani, A.-M. Mariotte, L. Chekir-Ghedira, M.-G. Dijoux-Franca and K. Ghedira, Food Chem., 116, 258 (2009); doi:10.1016/j.foodchem.2009.02.043.
M.J. Frisch, G.W. Trucks and H.B. Schlegel, Gaussian03, Revision D.02; Gaussian, Inc.: Pittsburgh, PA (2003).
T. Lu and F.W. Chen, J. Comput. Chem., 33, 580 (2012); doi:10.1002/jcc.22885.
L. Santiago-Rodríguez, M.M. Lafontaine, C. Castro, J. Méndez-Vega, M. Latorre-Esteves, E.J. Juan, E. Mora, M. Torres-Lugo and C. Rinaldi, J. Mater. Chem. B., 1, 2807 (2013); doi:10.1039/c3tb20256a.
K.D.O. Vigier, A. Benguerba, A. Barrault and F. Jérôme, J. Green Chem., 14, 285 (2012); doi:10.1039/c1gc16236e.
F. Russo, C. Clemente, M. Linsalata, M. Chiloiro, A. Orlando, E. Marconi, G. Chimienti and G. Riezzo, Eur. J. Nutr., 50, 271 (2011); doi:10.1007/s00394-010-0135-6.
Y. Ruiz-Morales, J. Phys. Chem. A, 106, 11283 (2002); doi:10.1021/jp021152e.
P. Geerlings, F. Deproft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); doi:10.1021/cr990029p.
E.M. Dewulf, P.D. Cani, A.M. Neyrinck, S. Possemiers, A.V. Holle, G.G. Muccioli, L. Deldicque, L.B. Bindels, B.D. Pachikian, F.M. Sohet, E. Mignolet, M. Francaux, Y. Larondelle and N.M. Delzenne, J. Nutr. Biochem., 22, 712 (2011); doi:10.1016/j.jnutbio.2010.05.009.
B.S. Reddy, R. Hamid and C.V. Rao, Carcinogenesis, 18, 1371 (1997); doi:10.1093/carcin/18.7.1371.