Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Evaluation of Ca/P Ratios in Infant Milk Samples by CH4-Ar Mixed Plasma-DRC-MS
Corresponding Author(s) : Lanlan Jin
Asian Journal of Chemistry,
Vol. 26 No. 22 (2014): Vol 26 Issue 22
Abstract
Methane mixed plasma dynamic reaction cell mass spectrometry was successfully used for accurate determination of Ca and P and Ca/P ratios in infant milk samples. The interfering 40Ar+ at m/z 40 was reduced in intensity by up to five orders of magnitude using 1.1 mL min-1 CH4 as reaction gas in a dynamic reaction cell. Polyatomic ion interferences (14N16O1H+, 15N16O+ and 14N17O+ etc.) at m/z 31 were eliminated by detecting P+ as the product oxide ions 31P16O+ using O2 as the cell gas. The poor sensitivity of 31P16O+ was improved to 3-fold by addition of 3 mL-1 methane to the plasma. An extending dynamic range technique based on adjusting the dynamic reaction cell bandpass parameters (RPa) was successfully employed to extend the linearity of 40Ca+ from 1 mg L-1 up to 100 mg L-1. LOD of Ca and P was 0.3 and 4 ng mL-1, respectively. Results of three milk powder standard reference materials were in good agreement with the certified values. The proposed method was applied to determination of 160 milk samples collected from twenty different markets of China and the results of Ca/P ratio ranged from 1.3 to 1.9, which accorded with the official standards (1-2) of FAO/WHO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.A.R. Martino, M.L.F. Sanchez and A.S. Medel, J. Anal. At. Spectrom., 15, 163 (2000); doi:10.1039/a907925d.
- J.G. Dorea, Nutr. Res., 19, 709 (1999); doi:10.1016/S0271-5317(99)00035-4.
- FAO/WHO Food Standards, Official Standards, Codex Stan 72-1981 (2007).
- R.S. Houk, Anal. Chem., 58, 97A (1986); doi:10.1021/ac00292a003.
- J.L. Ma, R.Q. Zhang, H. Ye, J. Wang, X.G. Li, Q. Wang, C.Y. Miao and Y.K. Rui, Asia J. Chem., 25, 8833 (2013); doi:10.14233/ajchem.2013.15691.
- L. Chuan, B.L. Wu and Y. Zhang, Asian J. Chem., 25, 6993 (2013); doi:10.14233/ajchem.2013.15122.
- B. Avula, Y.H. Wang, N.S. Duzgoren-Aydin and I.A. Khan, Food Chem., 127, 54 (2011); doi:10.1016/j.foodchem.2010.12.083.
- W. Guo, S.H. Hu, X.F. Li, J. Zhao, S.S. Jin, W.J. Liu and H.F. Zhang, Talanta, 84, 887 (2011); doi:10.1016/j.talanta.2011.02.026.
- M. Wind, M. Edler, N. Jakubowski, M. Linscheid, H. Wesch and W.D. Lehmann, Anal. Chem., 73, 29 (2001); doi:10.1021/ac0009595.
- T.W. May and R.H. Wiedmeyer, At. Spectrosc., 19, 150 (1998).
- S.J. Jiang, R.S. Houk and M.A. Stevens, Anal. Chem., 60, 1217 (1988); doi:10.1021/ac00162a023.
- K.Y. Patterson, C. Veillon, A.D. Hill, P.B. Moser-Veillon and T.C. O’Haver, J. Anal. At. Spectrom., 14, 1673 (1999); doi:10.1039/a900677j.
- D.R. Bandura, V.I. Baranov and S.D. Tanner, Anal. Chem., 74, 1497 (2002); doi:10.1021/ac011031v.
- S.D. Tanner, V.I. Baranov and D.R. Bandura, Spectrochim. Acta B, 57, 1361 (2002); doi:10.1016/S0584-8547(02)00069-1.
- W. Guo, S.H. Hu, J.Y. Zhang and H.F. Zhang, Sci. Total Environ., 409, 2981 (2011); doi:10.1016/j.scitotenv.2011.04.011.
- J.W. Olesik and D.R. Jones, J. Anal. At. Spectrom., 21, 141 (2006); doi:10.1039/b511464k.
- W. Guo, S.H. Hu, X.J. Wang, J.Y. Zhang, L.L. Jin, Z.L. Zhu and H.F. Zhang, J. Anal. At. Spectrom., 26, 1198 (2011); doi:10.1039/c1ja00005e.
- K.L. Chen and S.J. Jiang, Anal. Chim. Acta, 470, 223 (2002); doi:10.1016/S0003-2670(02)00768-7.
- C.H. Yang and S.J. Jiang, Spectrochim. Acta B, 59, 1389 (2004); doi:10.1016/j.sab.2004.06.001.
- M.-C. Wu, S.-J. Jiang and T.-S. Hsi, Anal. Bioanal. Chem., 377, 154 (2003); doi:10.1007/s00216-003-2067-y.
- W. Guo, S.H. Hu, Y.X. Wang, L. Zhang, Z. Hu and J. Zhang, Microchem. J., 108, 106 (2013); doi:10.1016/j.microc.2012.10.006.
- D.R. Bandura, I.I. Ornatsky and L. Liao, J. Anal. At. Spectrom., 19, 96 (2004); doi:10.1039/b308901k.
- P. Allain, L. Jaunault, Y. Mauras, J.M. Mermet and T. Delaporte, Anal. Chem., 63, 1497 (1991); doi:10.1021/ac00014a028.
- G.H. Floor, R. Millot, M. Iglesias and P. Négrel, J. Mass Spectrom., 46, 182 (2011); doi:10.1002/jms.1880.
- W. Guo, S.H. Hu, J.Y. Zhang, L.L. Jin, X.J. Wang, Z.L. Zhu and H.F. Zhang, J. Anal. At. Spectrom., 26, 2076 (2011); doi:10.1039/c1ja10126a.
- Z.C. Hu, S.H. Hu, S. Gao, Y.S. Liu and S.L. Lin, Spectrochim. Acta B, 59, 1463 (2004); doi:10.1016/j.sab.2004.07.007.
- E.H. Larsen and S. Stürup, J. Anal. At. Spectrom., 9, 1099 (1994); doi:10.1039/ja9940901099.
- M. Kovačevič, W. Goessler, N. Mikac and M. Veber, Anal. Bioanal. Chem., 383, 145 (2005); doi:10.1007/s00216-005-3389-8.
- F. Abou-Shakra, PerkinElmer FAR 007437_01 (2005).
References
F.A.R. Martino, M.L.F. Sanchez and A.S. Medel, J. Anal. At. Spectrom., 15, 163 (2000); doi:10.1039/a907925d.
J.G. Dorea, Nutr. Res., 19, 709 (1999); doi:10.1016/S0271-5317(99)00035-4.
FAO/WHO Food Standards, Official Standards, Codex Stan 72-1981 (2007).
R.S. Houk, Anal. Chem., 58, 97A (1986); doi:10.1021/ac00292a003.
J.L. Ma, R.Q. Zhang, H. Ye, J. Wang, X.G. Li, Q. Wang, C.Y. Miao and Y.K. Rui, Asia J. Chem., 25, 8833 (2013); doi:10.14233/ajchem.2013.15691.
L. Chuan, B.L. Wu and Y. Zhang, Asian J. Chem., 25, 6993 (2013); doi:10.14233/ajchem.2013.15122.
B. Avula, Y.H. Wang, N.S. Duzgoren-Aydin and I.A. Khan, Food Chem., 127, 54 (2011); doi:10.1016/j.foodchem.2010.12.083.
W. Guo, S.H. Hu, X.F. Li, J. Zhao, S.S. Jin, W.J. Liu and H.F. Zhang, Talanta, 84, 887 (2011); doi:10.1016/j.talanta.2011.02.026.
M. Wind, M. Edler, N. Jakubowski, M. Linscheid, H. Wesch and W.D. Lehmann, Anal. Chem., 73, 29 (2001); doi:10.1021/ac0009595.
T.W. May and R.H. Wiedmeyer, At. Spectrosc., 19, 150 (1998).
S.J. Jiang, R.S. Houk and M.A. Stevens, Anal. Chem., 60, 1217 (1988); doi:10.1021/ac00162a023.
K.Y. Patterson, C. Veillon, A.D. Hill, P.B. Moser-Veillon and T.C. O’Haver, J. Anal. At. Spectrom., 14, 1673 (1999); doi:10.1039/a900677j.
D.R. Bandura, V.I. Baranov and S.D. Tanner, Anal. Chem., 74, 1497 (2002); doi:10.1021/ac011031v.
S.D. Tanner, V.I. Baranov and D.R. Bandura, Spectrochim. Acta B, 57, 1361 (2002); doi:10.1016/S0584-8547(02)00069-1.
W. Guo, S.H. Hu, J.Y. Zhang and H.F. Zhang, Sci. Total Environ., 409, 2981 (2011); doi:10.1016/j.scitotenv.2011.04.011.
J.W. Olesik and D.R. Jones, J. Anal. At. Spectrom., 21, 141 (2006); doi:10.1039/b511464k.
W. Guo, S.H. Hu, X.J. Wang, J.Y. Zhang, L.L. Jin, Z.L. Zhu and H.F. Zhang, J. Anal. At. Spectrom., 26, 1198 (2011); doi:10.1039/c1ja00005e.
K.L. Chen and S.J. Jiang, Anal. Chim. Acta, 470, 223 (2002); doi:10.1016/S0003-2670(02)00768-7.
C.H. Yang and S.J. Jiang, Spectrochim. Acta B, 59, 1389 (2004); doi:10.1016/j.sab.2004.06.001.
M.-C. Wu, S.-J. Jiang and T.-S. Hsi, Anal. Bioanal. Chem., 377, 154 (2003); doi:10.1007/s00216-003-2067-y.
W. Guo, S.H. Hu, Y.X. Wang, L. Zhang, Z. Hu and J. Zhang, Microchem. J., 108, 106 (2013); doi:10.1016/j.microc.2012.10.006.
D.R. Bandura, I.I. Ornatsky and L. Liao, J. Anal. At. Spectrom., 19, 96 (2004); doi:10.1039/b308901k.
P. Allain, L. Jaunault, Y. Mauras, J.M. Mermet and T. Delaporte, Anal. Chem., 63, 1497 (1991); doi:10.1021/ac00014a028.
G.H. Floor, R. Millot, M. Iglesias and P. Négrel, J. Mass Spectrom., 46, 182 (2011); doi:10.1002/jms.1880.
W. Guo, S.H. Hu, J.Y. Zhang, L.L. Jin, X.J. Wang, Z.L. Zhu and H.F. Zhang, J. Anal. At. Spectrom., 26, 2076 (2011); doi:10.1039/c1ja10126a.
Z.C. Hu, S.H. Hu, S. Gao, Y.S. Liu and S.L. Lin, Spectrochim. Acta B, 59, 1463 (2004); doi:10.1016/j.sab.2004.07.007.
E.H. Larsen and S. Stürup, J. Anal. At. Spectrom., 9, 1099 (1994); doi:10.1039/ja9940901099.
M. Kovačevič, W. Goessler, N. Mikac and M. Veber, Anal. Bioanal. Chem., 383, 145 (2005); doi:10.1007/s00216-005-3389-8.
F. Abou-Shakra, PerkinElmer FAR 007437_01 (2005).