Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Removal of Chemical Ammonia Nitrogen from Biologically Pretreated Coking Wastewater Using Immobilized Three-Dimensional Electrodes
Corresponding Author(s) : Hao Wang
Asian Journal of Chemistry,
Vol. 26 No. 21 (2014): Vol 26 Issue 21
Abstract
Electrochemical oxidation of ammonia nitrogen contained in biologically pretreated coking wastewater treated by three-dimensional electrode system with combined modified coke served as packed bed particle electrodes and Ti/RuO2/IrO2 anode was studied. At the same time the influence of retention time, plate spacing, A/V (area/volume) and current density on ammonia nitrogen removal efficiency with combined three-dimensional electrodes was also investigated. The results show that the three-dimensional electrodes in combined process could effectively decompose ammonium. For plate distance of 1 cm, retention time of 40 min and current density of 9 mA/cm2, the highest removal efficiency of nitrogenous compounds was achieved. The ammonia nitrogen removal efficiency can reach more than 90 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Mehrdadi, A. Rahmani, A.A. Azimi and A. Torbian, Asian J. Chem., 21, 5245 (2009).
- C.C. Tanner, J.P.S. Sukias and M.P. Upsdell, Water Res., 32, 3046 (1998); doi:10.1016/S0043-1354(98)00078-5.
- H. Wang and L. Zhang, Asian J. Chem., 24, 5299 (2012).
- Y.F. Lin, S.R. Jing, D.Y. Lee and T.W. Wang, Aquaculture, 209, 169 (2002); doi:10.1016/S0044-8486(01)00801-8.
- J. Chang, X.H. Zhang and R. Perfler, Fresenius Environ. Bull., 16, 1082 (2007).
- P.A. Mays and G.S. Edwards, Ecol. Eng., 16, 487 (2001); doi:10.1016/S0925-8574(00)00112-9.
- G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002); doi:10.1016/S0925-8574(01)00106-9.
- H. Wang and X.W. He, Fresenius Environ. Bull., 20, 2890 (2011).
- F. Rivera, A. Warren, C.R. Curds, E. Robles, A. Gutierrez, E. Gallegos and A. Calderon, Water Sci. Technol., 35, 271 (1997); doi:10.1016/S0273-1223(97)00078-4.
- C.L. Yue, J. Chang and Y. Ge, Fresenius Environ. Bull., 17, 992 (2008).
- N. Korboulewsky, R.Y. Wang and V. Baldy, Bioresour. Technol., 105, 9 (2012); doi:10.1016/j.biortech.2011.11.037.
- C.J. Richardson and S.S. Qian, Environ. Sci. Technol., 33, 1545 (1999); doi:10.1021/es980924a.
References
N. Mehrdadi, A. Rahmani, A.A. Azimi and A. Torbian, Asian J. Chem., 21, 5245 (2009).
C.C. Tanner, J.P.S. Sukias and M.P. Upsdell, Water Res., 32, 3046 (1998); doi:10.1016/S0043-1354(98)00078-5.
H. Wang and L. Zhang, Asian J. Chem., 24, 5299 (2012).
Y.F. Lin, S.R. Jing, D.Y. Lee and T.W. Wang, Aquaculture, 209, 169 (2002); doi:10.1016/S0044-8486(01)00801-8.
J. Chang, X.H. Zhang and R. Perfler, Fresenius Environ. Bull., 16, 1082 (2007).
P.A. Mays and G.S. Edwards, Ecol. Eng., 16, 487 (2001); doi:10.1016/S0925-8574(00)00112-9.
G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002); doi:10.1016/S0925-8574(01)00106-9.
H. Wang and X.W. He, Fresenius Environ. Bull., 20, 2890 (2011).
F. Rivera, A. Warren, C.R. Curds, E. Robles, A. Gutierrez, E. Gallegos and A. Calderon, Water Sci. Technol., 35, 271 (1997); doi:10.1016/S0273-1223(97)00078-4.
C.L. Yue, J. Chang and Y. Ge, Fresenius Environ. Bull., 17, 992 (2008).
N. Korboulewsky, R.Y. Wang and V. Baldy, Bioresour. Technol., 105, 9 (2012); doi:10.1016/j.biortech.2011.11.037.
C.J. Richardson and S.S. Qian, Environ. Sci. Technol., 33, 1545 (1999); doi:10.1021/es980924a.