Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photochemical Behaviour in Macrocyclic Copper Complex-Bromate-Malic Acid System
Corresponding Author(s) : Gang Hu
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
The photochemical behaviour in the macrocyclic copper complex-bromate-malic acid system was investigated in this paper. Macrocyclic copper complex [CuL](ClO4)2, where ligand L is 5,7,7,12,14,14-hexemethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, is an enzyme-like complex. Experimental results indicated that the chemical oscillations exhibited ultrasensitive response to illumination, where the amplitude of oscillation were significantly changed but the frequency remained unaffected by ultraviolet light working at 245 nm with an intensity of more than 450 Lux. Increase in light intensity could enhance inhibition on the oscillations. At a constant illumination, the influences of light were examined with the variation of the concentration of bromate, malic acid, and macrocyclic complex. It was found that the ultraviolet light has affectedly influence on the oscillation trajectories of potentials of platinum electrode vs. those of bromide selective electrode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics; Oxford University Press: New York (1998).
- M. Orban and E. Koros, J. Phys. Chem., 82, 1672 (1978); doi:10.1021/j100503a021.
- P. Herbine and R.J. Field, J. Phys. Chem., 84, 1330 (1980); doi:10.1021/j100448a008.
- G. Hu, Z. Xu, F. Xie, L. Hu and S. Ni, Asian J. Chem., 13, 137 (2001).
- K.R. Sharma and R.M. Noyes, J. Am. Chem. Soc., 97, 202 (1975); doi:10.1021/ja00834a043.
- T.S. Briggs and W.C. Rauscher, J. Chem. Educ., 50, 496 (1973); doi:10.1021/ed050p496.
- K. Höner, R. Cervellati and C. Neddens, Eur. Food Res. Technol., 214, 356 (2002); doi:10.1007/s00217-001-0443-4.
- K. Höner and R. Cervellati, Eur. Food Res. Technol., 215, 437 (2002); doi:10.1007/s00217-002-0582-2.
- R. Cervellati, C. Renzulli, M.C. Guerra and E. Speroni, J. Agric. Food Chem., 50, 7504 (2002); doi:10.1021/jf020578n.
- A.P. Munuzuri, M. Dolnik, A.N. Zhabotinsky and I.R. Epstein, J. Am. Chem. Soc., 121, 8065 (1999); doi:10.1021/ja9910457.
- V. Gaspar, G. Bazsa and M.T. Beck, Z. Phys. Chem. (Leipzig), 264, 43 (1983).
- L. Kuhnert, Nature, 319, 393 (1986); doi:10.1038/319393a0.
- L. Kuhnert, K.I. Agladze and V.I. Krinsky, Nature, 337, 244 (1989); doi:10.1038/337244a0.
- M. Jinguji, M. Ishihara and T. Nakazawa, J. Phys. Chem., 96, 4279 (1992); doi:10.1021/j100190a033.
- B. Zhao and J. Wang, Chem. Phys. Lett., 430, 41 (2006); doi:10.1016/j.cplett.2006.08.070.
- N. Li and J. Wang, J. Phys. Chem. A, 112, 6281 (2008); doi:10.1021/jp802623r.
- T. Yamaguchi, Y. Shimamoto, T. Amemiya, M. Yoshimoto, T. Ohmori, M. Nakaiwa, T. Akiya, M. Sato and T. Matsumura-Inoue, Chem. Phys. Lett., 259, 219 (1996); doi:10.1016/0009-2614(96)00721-X.
- Y. Mori, Y. Nakamichi, T. Sekiguchi, N. Okazaki, T. Matsumura and I. Hanazaki, Chem. Phys. Lett., 211, 421 (1993); doi:10.1016/0009-2614(93)87084-G.
- A. Kaminaga, Y. Mori and I. Hanazaki, Chem. Phys. Lett., 279, 339 (1997); doi:10.1016/S0009-2614(97)01078-6.
- T. Sekiguchi, Y. Mori, N. Okazaki and I. Hanazaki, Chem. Phys. Lett., 219, 81 (1994); doi:10.1016/0009-2614(94)00040-9.
- G. Hu, Z.D. Zhang, L. Hu and J.M. Song, Transition Met. Chem., 30, 856 (2005); doi:10.1007/s11243-005-6259-5.
- L. Hu, G. Hu and H.-H. Xu, J. Anal. Chem., 61, 1021 (2006); doi:10.1134/S1061934806100133.
- G. Hu, P. Chen, W. Wang, L. Hu, J. Song, L. Qiu and J. Song, Electrochim. Acta, 52, 7996 (2007); doi:10.1016/j.electacta.2007.06.067.
- P. Chen, G. Hu, W. Wang, J. Song, L. Qiu, H. Wang, L. Chen, J. Zhang and L. Hu, J. Appl. Electrochem., 38, 1779 (2008); doi:10.1007/s10800-008-9629-9.
- L. Chen, G. Hu, J. Zhang and L. Hu, Mendeleev Commun., 19, 224 (2009); doi:10.1016/j.mencom.2009.07.018.
- G. Hu, L. Chen, J. Zhang, P. Chen, W. Wang, J. Song, L. Qiu, J. Song and L. Hu, Cent. Eur. J. Chem., 7, 291 (2009); doi:10.2478/s11532-009-0042-y.
- N.F. Curtis and R.W. Hay, J. Chem. Soc. Chem. Commun., 524 (1966); doi:10.1039/C19660000524.
References
I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics; Oxford University Press: New York (1998).
M. Orban and E. Koros, J. Phys. Chem., 82, 1672 (1978); doi:10.1021/j100503a021.
P. Herbine and R.J. Field, J. Phys. Chem., 84, 1330 (1980); doi:10.1021/j100448a008.
G. Hu, Z. Xu, F. Xie, L. Hu and S. Ni, Asian J. Chem., 13, 137 (2001).
K.R. Sharma and R.M. Noyes, J. Am. Chem. Soc., 97, 202 (1975); doi:10.1021/ja00834a043.
T.S. Briggs and W.C. Rauscher, J. Chem. Educ., 50, 496 (1973); doi:10.1021/ed050p496.
K. Höner, R. Cervellati and C. Neddens, Eur. Food Res. Technol., 214, 356 (2002); doi:10.1007/s00217-001-0443-4.
K. Höner and R. Cervellati, Eur. Food Res. Technol., 215, 437 (2002); doi:10.1007/s00217-002-0582-2.
R. Cervellati, C. Renzulli, M.C. Guerra and E. Speroni, J. Agric. Food Chem., 50, 7504 (2002); doi:10.1021/jf020578n.
A.P. Munuzuri, M. Dolnik, A.N. Zhabotinsky and I.R. Epstein, J. Am. Chem. Soc., 121, 8065 (1999); doi:10.1021/ja9910457.
V. Gaspar, G. Bazsa and M.T. Beck, Z. Phys. Chem. (Leipzig), 264, 43 (1983).
L. Kuhnert, Nature, 319, 393 (1986); doi:10.1038/319393a0.
L. Kuhnert, K.I. Agladze and V.I. Krinsky, Nature, 337, 244 (1989); doi:10.1038/337244a0.
M. Jinguji, M. Ishihara and T. Nakazawa, J. Phys. Chem., 96, 4279 (1992); doi:10.1021/j100190a033.
B. Zhao and J. Wang, Chem. Phys. Lett., 430, 41 (2006); doi:10.1016/j.cplett.2006.08.070.
N. Li and J. Wang, J. Phys. Chem. A, 112, 6281 (2008); doi:10.1021/jp802623r.
T. Yamaguchi, Y. Shimamoto, T. Amemiya, M. Yoshimoto, T. Ohmori, M. Nakaiwa, T. Akiya, M. Sato and T. Matsumura-Inoue, Chem. Phys. Lett., 259, 219 (1996); doi:10.1016/0009-2614(96)00721-X.
Y. Mori, Y. Nakamichi, T. Sekiguchi, N. Okazaki, T. Matsumura and I. Hanazaki, Chem. Phys. Lett., 211, 421 (1993); doi:10.1016/0009-2614(93)87084-G.
A. Kaminaga, Y. Mori and I. Hanazaki, Chem. Phys. Lett., 279, 339 (1997); doi:10.1016/S0009-2614(97)01078-6.
T. Sekiguchi, Y. Mori, N. Okazaki and I. Hanazaki, Chem. Phys. Lett., 219, 81 (1994); doi:10.1016/0009-2614(94)00040-9.
G. Hu, Z.D. Zhang, L. Hu and J.M. Song, Transition Met. Chem., 30, 856 (2005); doi:10.1007/s11243-005-6259-5.
L. Hu, G. Hu and H.-H. Xu, J. Anal. Chem., 61, 1021 (2006); doi:10.1134/S1061934806100133.
G. Hu, P. Chen, W. Wang, L. Hu, J. Song, L. Qiu and J. Song, Electrochim. Acta, 52, 7996 (2007); doi:10.1016/j.electacta.2007.06.067.
P. Chen, G. Hu, W. Wang, J. Song, L. Qiu, H. Wang, L. Chen, J. Zhang and L. Hu, J. Appl. Electrochem., 38, 1779 (2008); doi:10.1007/s10800-008-9629-9.
L. Chen, G. Hu, J. Zhang and L. Hu, Mendeleev Commun., 19, 224 (2009); doi:10.1016/j.mencom.2009.07.018.
G. Hu, L. Chen, J. Zhang, P. Chen, W. Wang, J. Song, L. Qiu, J. Song and L. Hu, Cent. Eur. J. Chem., 7, 291 (2009); doi:10.2478/s11532-009-0042-y.
N.F. Curtis and R.W. Hay, J. Chem. Soc. Chem. Commun., 524 (1966); doi:10.1039/C19660000524.