Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Selective Adsorption Behaviour of Mesoporous Silica SBA-15-N-Acetylcysteine Imprinted Polymer Based on Surface Molecular Imprinting Technique
Corresponding Author(s) : Xiaolan Zhu
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
A new N-acetylcysteine ion-imprinted polymer (NAC-MIP), which can be used for selective adsorption of N-acetylcysteine from aqueous solutions, was successfully prepared based on the supported material of ordered mesoporous silica SBA-15 with the help of surface molecular imprinting technology. The prepared polymer was characterized by Fourier transmission infrared sepectrometry, X-ray diffraction, scanning electron microscopy and 13C NMR spectroscopy. The results showed that the synthesized polymer possessed highly ordered mesoporous structure. The imprinted silica particle showed high selectivity and fast kinetic binding for the template due to its nanosized wall thickness and high surface area.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Eisenbrand, M. Otteneder and W. Tang, Toxicol., 190, 249 (2003); doi:10.1016/S0300-483X(03)00204-X.
- K. Karthikeyan, G.T. Arularasu, R. Ramadhas and K.C. Pillai, J. Pharm. Biomed. Anal., 54, 850 (2011); doi:10.1016/j.jpba.2010.10.015.
- G. Wulff, Chem. Rev., 102, 1 (2002); doi:10.1021/cr980039a.
- D. Zhang, Y. Lv, R. Chen and C.C. Shi, Asian J. Chem., 25, 3922 (2013); doi:10.14233/ajchem.2013.13845.
- C.H. Lu, W.H. Zhou, B. Han, H.H. Yang, X. Chen and X.R. Wang, Anal. Chem., 79, 5457 (2007); doi:10.1021/ac070282m.
- D.M. Gao, Z.P. Zhang, M.H. Wu, C.G. Xie, G.J. Guan and D.P. Wang, J. Am. Chem. Soc., 129, 7859 (2007); doi:10.1021/ja070975k.
- D. Tian, G.P. Yong, H.W. Tong and S.M. Liu, Chin. J. Chem. Phys., 23, 479 (2010); doi:10.1088/1674-0068/23/04/479-483.
- W.G. Borghard, D.C. Calabro, F.P. DiSanzo, M.M. Disko, J.W. Diehl, J.C. Fried, M.A. Markowitz, M. Zeinali, B.J. Melde and A.E. Riley, Langmuir, 25, 12661 (2009); doi:10.1021/la901334z.
- C.X. Song, X.L. Zhang, C.Y. Jia, P. Zhou, X. Quan and C. Duan, Talanta, 81, 643 (2010); doi:10.1016/j.talanta.2009.12.047.
- Y. Wang, Y. Yang, L. Xu and J. Zhang, Electrochim. Acta, 56, 2105 (2011); doi:10.1016/j.electacta.2010.11.077.
- Y. Liu, Z.C. Liu, J. Gao, J.D. Dai, J. Han, Y. Wang, J.M. Xie and Y.S. Yan, J. Hazard. Mater., 186, 197 (2011); doi:10.1016/j.jhazmat.2010.10.105.
- D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science, 279, 548 (1998); doi:10.1126/science.279.5350.548.
- S. Zheng, L. Gao and J. Guo, J. Solid State Chem., 152, 447 (2000); doi:10.1006/jssc.2000.8708.
- R. Ojani, E. Ahmadi, J.B. Raoof and F. Mohamadnia, J. Electroanal. Chem., 626, 23 (2009); doi:10.1016/j.jelechem.2008.10.018.
- J.E. Lofgreen, I.L. Moudrakovski and G.A. Ozin, ACS Nano, 5, 2277 (2011); doi:10.1021/nn1035697.
- B.M. Jung, M.S. Kim, W.J. Kim and J.Y. Chang, Chem. Commun., 46, 3699 (2010); doi:10.1039/c003173a.
- Y. Du, J. Yang, W. Tang, X.L. Zhu, L. Zhang and Y. Gao, Asian J. Chem., 24, 1175 (2012).
- L. Chen, S. Xu and J. Li, Chem. Soc. Rev., 40, 2922 (2011); doi:10.1039/c0cs00084a.
References
G. Eisenbrand, M. Otteneder and W. Tang, Toxicol., 190, 249 (2003); doi:10.1016/S0300-483X(03)00204-X.
K. Karthikeyan, G.T. Arularasu, R. Ramadhas and K.C. Pillai, J. Pharm. Biomed. Anal., 54, 850 (2011); doi:10.1016/j.jpba.2010.10.015.
G. Wulff, Chem. Rev., 102, 1 (2002); doi:10.1021/cr980039a.
D. Zhang, Y. Lv, R. Chen and C.C. Shi, Asian J. Chem., 25, 3922 (2013); doi:10.14233/ajchem.2013.13845.
C.H. Lu, W.H. Zhou, B. Han, H.H. Yang, X. Chen and X.R. Wang, Anal. Chem., 79, 5457 (2007); doi:10.1021/ac070282m.
D.M. Gao, Z.P. Zhang, M.H. Wu, C.G. Xie, G.J. Guan and D.P. Wang, J. Am. Chem. Soc., 129, 7859 (2007); doi:10.1021/ja070975k.
D. Tian, G.P. Yong, H.W. Tong and S.M. Liu, Chin. J. Chem. Phys., 23, 479 (2010); doi:10.1088/1674-0068/23/04/479-483.
W.G. Borghard, D.C. Calabro, F.P. DiSanzo, M.M. Disko, J.W. Diehl, J.C. Fried, M.A. Markowitz, M. Zeinali, B.J. Melde and A.E. Riley, Langmuir, 25, 12661 (2009); doi:10.1021/la901334z.
C.X. Song, X.L. Zhang, C.Y. Jia, P. Zhou, X. Quan and C. Duan, Talanta, 81, 643 (2010); doi:10.1016/j.talanta.2009.12.047.
Y. Wang, Y. Yang, L. Xu and J. Zhang, Electrochim. Acta, 56, 2105 (2011); doi:10.1016/j.electacta.2010.11.077.
Y. Liu, Z.C. Liu, J. Gao, J.D. Dai, J. Han, Y. Wang, J.M. Xie and Y.S. Yan, J. Hazard. Mater., 186, 197 (2011); doi:10.1016/j.jhazmat.2010.10.105.
D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science, 279, 548 (1998); doi:10.1126/science.279.5350.548.
S. Zheng, L. Gao and J. Guo, J. Solid State Chem., 152, 447 (2000); doi:10.1006/jssc.2000.8708.
R. Ojani, E. Ahmadi, J.B. Raoof and F. Mohamadnia, J. Electroanal. Chem., 626, 23 (2009); doi:10.1016/j.jelechem.2008.10.018.
J.E. Lofgreen, I.L. Moudrakovski and G.A. Ozin, ACS Nano, 5, 2277 (2011); doi:10.1021/nn1035697.
B.M. Jung, M.S. Kim, W.J. Kim and J.Y. Chang, Chem. Commun., 46, 3699 (2010); doi:10.1039/c003173a.
Y. Du, J. Yang, W. Tang, X.L. Zhu, L. Zhang and Y. Gao, Asian J. Chem., 24, 1175 (2012).
L. Chen, S. Xu and J. Li, Chem. Soc. Rev., 40, 2922 (2011); doi:10.1039/c0cs00084a.