Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermal Degradation Kinetics and Stability Study of Chrysin by Thermal Analysis
Corresponding Author(s) : Cuiwu Lin
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
Chrysin is one of the natural flavonoids possessing many biological activities. Research in thermal decomposition of chrysin is of great interest in developing its derivants. thermal analysis study was carried out by thermogravimetric analyser unit, microscopic melting point apparatus and differential scanning calorimetry instrument. The results showed chrysin began melting at 558 K and then evaporate. The evaporation process was analyzed by the Ozaw-Flynn-Wall (OFW) equation, Kissinger-Akahira-Sunose (KAS) equation, Tang equation, Starink equation, iterative Ozaw-Flynn-Wall equation and iterative Kissinger-Akahira-Sunose equation. The evaporation process of chrysin was a single-step kinetic process. The average value of activation energies, pre-exponential A and thermodynamic functions (DS¹, DH¹ and DG¹) of the transition state were calculated. The most probable mechanism for the thermal decomposition stage also was found.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.A. Williams, J.B. Harborne, M. Newman, J. Greenham and J. Eagles, Phytochemistry, 46, 1349 (1997); doi:10.1016/S0031-9422(97)00514-1.
- J. Wang, B. Zhao, H. Xu, M. Zhao, W. Tang and S. Zhang, Zhongguo Zhongyao Zazhi, 36, 3270 (2011).
- M. Candiracci, B. Citterio, G. Diamantini, M. Blasa, A. Accorsi and E. Piatti, Int. J. Food Prop., 14, 799 (2011); doi:10.1080/10942910903453355.
- X. Li, Q. Huang, C.N. Ong, X.F. Yang and H.M. Shen, Cancer Lett., 293, 109 (2010); doi:10.1016/j.canlet.2010.01.002.
- S. Habtemariam, J. Nat. Prod., 60, 775 (1997); doi:10.1021/np960581z.
- M.M. Koganov, O.V. Dueva and B.L. Tsorin, J. Nat. Prod., 62, 481 (1999); doi:10.1021/np9801559.
- T. Lapidot, M.D. Walker and J. Kanner, J. Agric. Food Chem., 50, 7220 (2002); doi:10.1021/jf020615a.
- M. Machala, R. Kubínová, P. Hořavová and V. Suchý, Phytother. Res., 15, 114 (2001); doi:10.1002/ptr.697.
- H. Cho, C.W. Yun, W.K. Park, J.Y. Kong, K.S. Kim, Y. Park, S. Lee and B.K. Kim, Pharmacol. Res., 49, 37 (2004); doi:10.1016/S1043-6618(03)00248-2.
- E.J. Kim, K.J. Kwon, J.Y. Park, S.H. Lee, C.H. Moon and E.J. Baik, Brain Res., 941, 1 (2002); doi:10.1016/S0006-8993(02)02480-0.
- C.M. Lin, K.G. Shyu, B.W. Wang, H. Chang, Y.H. Chen and J.H. Chiu, J. Agric. Food Chem., 58, 7082 (2010); doi:10.1021/jf100421w.
- H.A. Mohammed, L.A. Ba, T. Burkholz, E. Schumann, B. Diesel, J. Zapp, A.K. Kiemer, C. Ries, R.W. Hartmann, M. Hosny and C. Jacob, Nat. Prod. Commun., 6, 31 (2011).
- G.A. Oliveira, E.R. Ferraz, A.O. Souza, R.A. Lourenco, D.P. Oliveira and D.J. Dorta, J. Toxicol. Environ. Health A, 75, 1000 (2012); doi:10.1080/15287394.2012.696517.
- F. Rodante, S. Vecchio, G. Catalani and M. Tomassetti, J. Therm. Anal. Calorim., 66, 155 (2001); doi:10.1023/A:1012495817109.
- Y. Huang, Y. Cheng, K. Alexander and D. Dollimore, Thermochim. Acta, 367–368, 43 (2001); doi:10.1016/S0040-6031(00)00687-0.
- R.E. Bruns, J. Therm. Anal. Calorim., 79, 697 (2005); doi:10.1007/s10973-005-0598-5.
- Z. Xiao, M. Guo, R. Guo and C. Tian, Chem. Ind. Forest Prod., 33, 13 (2013).
- S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu and N. Sbirrazzuoli, Thermochim. Acta, 520, 1 (2011); doi:10.1016/j.tca.2011.03.034.
- F. Rodante, S. Vecchio and M. Tomassetti, J. Pharm. Biomed. Anal., 29, 1031 (2002); doi:10.1016/S0731-7085(02)00144-9.
- T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965); doi:10.1246/bcsj.38.1881.
- D.K. Seo, S.S. Park, Y.T. Kim, J. Hwang and T.-U. Yu, J. Anal. Appl. Pyrolysis, 92, 209 (2011); doi:10.1016/j.jaap.2011.05.012.
- J.H. Flynn, Thermochim. Acta, 300, 83 (1997); doi:10.1016/S0040-6031(97)00046-4.
- D.K. Seo, S.S. Park, J. Hwang and T.-U. Yu, J. Anal. Appl. Pyrolysis, 89, 66 (2010); doi:10.1016/j.jaap.2010.05.008.
- B. Jankovic, S. Mentus and D. Jelic, Physica B, 404, 2263 (2009); doi:10.1016/j.physb.2009.04.024.
- A. S. Soltan, Physica B, 405, 965 (2010); doi:10.1016/j.physb.2009.10.032.
- B. Jankovic, B. Adnadevic and J. Jovanovic, Thermochim. Acta, 452, 106 (2007); doi:10.1016/j.tca.2006.07.022.
- W. Tang, Y. Liu, H. Zhang and C. Wang, Thermochim. Acta, 408, 39 (2003); doi:10.1016/S0040-6031(03)00310-1.
- M.J. Starink, Thermochim. Acta, 404, 163 (2003); doi:10.1016/S0040-6031(03)00144-8.
- Z. Gao, I. Amasaki and M. Nakada, Thermochim. Acta, 385, 95 (2002); doi:10.1016/S0040-6031(01)00706-7.
- S.D. Genieva, L.T. Vlaev and A.N. Atanassov, J. Therm. Anal. Calorim., 99, 551 (2010); doi:10.1007/s10973-009-0191-4.
- T. Su, H. Jiang and H. Gong, Polym.- Plast. Technol. Eng., 47, 398 (2008); doi:10.1080/03602550801897695.
- L. Liqing and C. Donghua, J. Therm. Anal. Calorim., 78, 283 (2004); doi:10.1023/B:JTAN.0000042175.27569.ee.
- G. Chunxiu, S. Yufang and C. Donghua, J. Therm. Anal. Calorim., 76, 203 (2004); doi:10.1023/B:JTAN.0000027819.43154.52.
- G.I. Senum and R.T. Yang, J. Therm. Anal., 11, 445 (1977); doi:10.1007/BF01903696.
- Z. Chen, Q. Chai, S. Liao, X. Chen, Y. He, Y. Li, W. Wu and B. Li, Ind. Eng. Chem. Res., 51, 8985 (2012); doi:10.1021/ie300774x.
- L.T. Vlaev, V.G. Georgieva and S.D. Genieva, J. Therm. Anal. Calorim., 88, 805 (2007); doi:10.1007/s10973-005-7149-y.
- H.F. Cordes, J. Phys. Chem., 72, 2185 (1968); doi:10.1021/j100852a052.
- J.M. Criado, L.A. Pérez-Maqueda and P.E. Sánchez-Jiménez, J. Therm. Anal. Calorim., 82, 671 (2005); doi:10.1007/s10973-005-0948-3.
- B. Janković, S. Mentus and D. Jelić, Physica B, 404, 2263 (2009); doi:10.1016/j.physb.2009.04.024.
- B. Boonchom, J. Chem. Eng. Data, 53, 1533 (2008); doi:10.1021/je800103w.
- X. Gao and D. Dollimore, Thermochim. Acta, 215, 47 (1993); doi:10.1016/0040-6031(93)80081-K.
- L.T. Vlaev, M.M. Nikolova and G.G. Gospodinov, J. Solid State Chem., 177, 2663 (2004); doi:10.1016/j.jssc.2004.04.036.
- B. Boonchom, J. Therm. Anal. Calorim., 98, 863 (2009); doi:10.1007/s10973-009-0108-2.
References
C.A. Williams, J.B. Harborne, M. Newman, J. Greenham and J. Eagles, Phytochemistry, 46, 1349 (1997); doi:10.1016/S0031-9422(97)00514-1.
J. Wang, B. Zhao, H. Xu, M. Zhao, W. Tang and S. Zhang, Zhongguo Zhongyao Zazhi, 36, 3270 (2011).
M. Candiracci, B. Citterio, G. Diamantini, M. Blasa, A. Accorsi and E. Piatti, Int. J. Food Prop., 14, 799 (2011); doi:10.1080/10942910903453355.
X. Li, Q. Huang, C.N. Ong, X.F. Yang and H.M. Shen, Cancer Lett., 293, 109 (2010); doi:10.1016/j.canlet.2010.01.002.
S. Habtemariam, J. Nat. Prod., 60, 775 (1997); doi:10.1021/np960581z.
M.M. Koganov, O.V. Dueva and B.L. Tsorin, J. Nat. Prod., 62, 481 (1999); doi:10.1021/np9801559.
T. Lapidot, M.D. Walker and J. Kanner, J. Agric. Food Chem., 50, 7220 (2002); doi:10.1021/jf020615a.
M. Machala, R. Kubínová, P. Hořavová and V. Suchý, Phytother. Res., 15, 114 (2001); doi:10.1002/ptr.697.
H. Cho, C.W. Yun, W.K. Park, J.Y. Kong, K.S. Kim, Y. Park, S. Lee and B.K. Kim, Pharmacol. Res., 49, 37 (2004); doi:10.1016/S1043-6618(03)00248-2.
E.J. Kim, K.J. Kwon, J.Y. Park, S.H. Lee, C.H. Moon and E.J. Baik, Brain Res., 941, 1 (2002); doi:10.1016/S0006-8993(02)02480-0.
C.M. Lin, K.G. Shyu, B.W. Wang, H. Chang, Y.H. Chen and J.H. Chiu, J. Agric. Food Chem., 58, 7082 (2010); doi:10.1021/jf100421w.
H.A. Mohammed, L.A. Ba, T. Burkholz, E. Schumann, B. Diesel, J. Zapp, A.K. Kiemer, C. Ries, R.W. Hartmann, M. Hosny and C. Jacob, Nat. Prod. Commun., 6, 31 (2011).
G.A. Oliveira, E.R. Ferraz, A.O. Souza, R.A. Lourenco, D.P. Oliveira and D.J. Dorta, J. Toxicol. Environ. Health A, 75, 1000 (2012); doi:10.1080/15287394.2012.696517.
F. Rodante, S. Vecchio, G. Catalani and M. Tomassetti, J. Therm. Anal. Calorim., 66, 155 (2001); doi:10.1023/A:1012495817109.
Y. Huang, Y. Cheng, K. Alexander and D. Dollimore, Thermochim. Acta, 367–368, 43 (2001); doi:10.1016/S0040-6031(00)00687-0.
R.E. Bruns, J. Therm. Anal. Calorim., 79, 697 (2005); doi:10.1007/s10973-005-0598-5.
Z. Xiao, M. Guo, R. Guo and C. Tian, Chem. Ind. Forest Prod., 33, 13 (2013).
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu and N. Sbirrazzuoli, Thermochim. Acta, 520, 1 (2011); doi:10.1016/j.tca.2011.03.034.
F. Rodante, S. Vecchio and M. Tomassetti, J. Pharm. Biomed. Anal., 29, 1031 (2002); doi:10.1016/S0731-7085(02)00144-9.
T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965); doi:10.1246/bcsj.38.1881.
D.K. Seo, S.S. Park, Y.T. Kim, J. Hwang and T.-U. Yu, J. Anal. Appl. Pyrolysis, 92, 209 (2011); doi:10.1016/j.jaap.2011.05.012.
J.H. Flynn, Thermochim. Acta, 300, 83 (1997); doi:10.1016/S0040-6031(97)00046-4.
D.K. Seo, S.S. Park, J. Hwang and T.-U. Yu, J. Anal. Appl. Pyrolysis, 89, 66 (2010); doi:10.1016/j.jaap.2010.05.008.
B. Jankovic, S. Mentus and D. Jelic, Physica B, 404, 2263 (2009); doi:10.1016/j.physb.2009.04.024.
A. S. Soltan, Physica B, 405, 965 (2010); doi:10.1016/j.physb.2009.10.032.
B. Jankovic, B. Adnadevic and J. Jovanovic, Thermochim. Acta, 452, 106 (2007); doi:10.1016/j.tca.2006.07.022.
W. Tang, Y. Liu, H. Zhang and C. Wang, Thermochim. Acta, 408, 39 (2003); doi:10.1016/S0040-6031(03)00310-1.
M.J. Starink, Thermochim. Acta, 404, 163 (2003); doi:10.1016/S0040-6031(03)00144-8.
Z. Gao, I. Amasaki and M. Nakada, Thermochim. Acta, 385, 95 (2002); doi:10.1016/S0040-6031(01)00706-7.
S.D. Genieva, L.T. Vlaev and A.N. Atanassov, J. Therm. Anal. Calorim., 99, 551 (2010); doi:10.1007/s10973-009-0191-4.
T. Su, H. Jiang and H. Gong, Polym.- Plast. Technol. Eng., 47, 398 (2008); doi:10.1080/03602550801897695.
L. Liqing and C. Donghua, J. Therm. Anal. Calorim., 78, 283 (2004); doi:10.1023/B:JTAN.0000042175.27569.ee.
G. Chunxiu, S. Yufang and C. Donghua, J. Therm. Anal. Calorim., 76, 203 (2004); doi:10.1023/B:JTAN.0000027819.43154.52.
G.I. Senum and R.T. Yang, J. Therm. Anal., 11, 445 (1977); doi:10.1007/BF01903696.
Z. Chen, Q. Chai, S. Liao, X. Chen, Y. He, Y. Li, W. Wu and B. Li, Ind. Eng. Chem. Res., 51, 8985 (2012); doi:10.1021/ie300774x.
L.T. Vlaev, V.G. Georgieva and S.D. Genieva, J. Therm. Anal. Calorim., 88, 805 (2007); doi:10.1007/s10973-005-7149-y.
H.F. Cordes, J. Phys. Chem., 72, 2185 (1968); doi:10.1021/j100852a052.
J.M. Criado, L.A. Pérez-Maqueda and P.E. Sánchez-Jiménez, J. Therm. Anal. Calorim., 82, 671 (2005); doi:10.1007/s10973-005-0948-3.
B. Janković, S. Mentus and D. Jelić, Physica B, 404, 2263 (2009); doi:10.1016/j.physb.2009.04.024.
B. Boonchom, J. Chem. Eng. Data, 53, 1533 (2008); doi:10.1021/je800103w.
X. Gao and D. Dollimore, Thermochim. Acta, 215, 47 (1993); doi:10.1016/0040-6031(93)80081-K.
L.T. Vlaev, M.M. Nikolova and G.G. Gospodinov, J. Solid State Chem., 177, 2663 (2004); doi:10.1016/j.jssc.2004.04.036.
B. Boonchom, J. Therm. Anal. Calorim., 98, 863 (2009); doi:10.1007/s10973-009-0108-2.