Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Equivalent Moduli of Carcass Layer in Flexible Pipes
Corresponding Author(s) : Wei Wang
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
Flexible pipes, as a typical composite structure, are generally applied to the ocean oil engineering. The Carcass layer of flexible pipes, with its particular structural formation, demonstrates orthotropic properties and the moduli of the Carcass layer are not the material moduli. Just the moduli of the Carcass layer are calculated, the whole structure will be analyzed. In the present paper, the equivalent modulus equations of the Carcass layer are deduced with the use of the ideology that under the same loading, the similar material and the original material have the same displacement. This analytical method of equivalent moduli shows good capacity in the prediction of the behaviour of the flexible pipes, which provides practical and technical support for the application of unbonded flexible pipes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Kagoura, K. Ishii, S. Abe, T. Inoue, T. Hayashi, T. Sakamoto, T. Mochizuki and T. Yamada, Furukawa Rev., 24, 69 (2003).
- J.J. Féret and C.L. Bournazel, J. Offshore Mech. Arctic Eng., 109, 263 (1987); doi:10.1115/1.3257019.
- P. Claydon, G. Cook, P.A. Brown and R. Chandwani, Mar. Struct., 5, 399 (1992); doi:10.1016/0951-8339(92)90011-D.
- A.M. Harte and J.F. McNamara, Modelling Procedures for the Stress Analysis of Flexible Pipe Cross Sections, Trans. ASME, 115, pp. 46-51 (1993).
- J.F. McNamara and A.M. Harte, Three Dimensional Analytical Simulation of Flexible Pipe Wall Structure, In Proceedings of the 8th International Conference on Offshore Mechanics and Arctic Engineering, vol. 1(8), pp. 477-482 (1989).
- I. Kraincanic and E. Kebadze, J. Strain Anal., 36, 265 (2001); doi:10.1243/0309324011514458.
- J.A. Witz and Z. Tan, Mar. Struct., 5, 205 (1992); doi:10.1016/0951-8339(92)90029-O.
- J.A. Witz and Z. Tan, Mar. Struct., 5, 229 (1992); doi:10.1016/0951-8339(92)90030-S.
- D.B. McIver, Eng. Struct., 17, 254 (1995); doi:10.1016/0141-0296(95)00024-2.
- M. Brack, L.M.B. Troina and J.R.M. Sousa, Flexible Riser Resistance Combined Axial Compression, Bending, and Torsion in Ultra-Deep Water Depths, Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE05, Halkidiki, Greece, June 12-17 (2005).
- Z. Tan, M. Case and T. Sheldrake, Higher Order Effects on Bending of Helical Armour Wire Inside an Unbonded Flexible Pipe, Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE05, Halkidiki, Greece, June 12-17 (2005).
- Y. Zhang, B. Chen, L. Qiu, T. Hill and M. Case, State of the Art Analytical Tools Improve Optimization of Unbonded Flexible Pipes for Deepwater Environments, The 2003 Offshore Technology Conference, Houston, Texas, USA, May 5-8 (2003).
- A. Bahtui, H. Bahai and G. Alfano, ASME J. Offshore Mech. Arct. Eng., 130, 041301 (2008); doi:10.1115/1.2948956.
- J.R.M. de Sousa, C. Magluta, N. Roitman, G.B. Ellwanger, E.C.P. Lima and A. Papaleo, Appl. Ocean Res., 31, 157 (2009); doi:10.1016/j.apor.2009.07.005.
- M.H. Fu and J.R. Yin, Chinese J. Theor. Appl. Mechan., 31, 113 (1999) (in Chinese).
- W. Wang and G. Chen, China Ocean Eng., 25, 737 (2011); doi:10.1007/s13344-011-0059-9.
References
T. Kagoura, K. Ishii, S. Abe, T. Inoue, T. Hayashi, T. Sakamoto, T. Mochizuki and T. Yamada, Furukawa Rev., 24, 69 (2003).
J.J. Féret and C.L. Bournazel, J. Offshore Mech. Arctic Eng., 109, 263 (1987); doi:10.1115/1.3257019.
P. Claydon, G. Cook, P.A. Brown and R. Chandwani, Mar. Struct., 5, 399 (1992); doi:10.1016/0951-8339(92)90011-D.
A.M. Harte and J.F. McNamara, Modelling Procedures for the Stress Analysis of Flexible Pipe Cross Sections, Trans. ASME, 115, pp. 46-51 (1993).
J.F. McNamara and A.M. Harte, Three Dimensional Analytical Simulation of Flexible Pipe Wall Structure, In Proceedings of the 8th International Conference on Offshore Mechanics and Arctic Engineering, vol. 1(8), pp. 477-482 (1989).
I. Kraincanic and E. Kebadze, J. Strain Anal., 36, 265 (2001); doi:10.1243/0309324011514458.
J.A. Witz and Z. Tan, Mar. Struct., 5, 205 (1992); doi:10.1016/0951-8339(92)90029-O.
J.A. Witz and Z. Tan, Mar. Struct., 5, 229 (1992); doi:10.1016/0951-8339(92)90030-S.
D.B. McIver, Eng. Struct., 17, 254 (1995); doi:10.1016/0141-0296(95)00024-2.
M. Brack, L.M.B. Troina and J.R.M. Sousa, Flexible Riser Resistance Combined Axial Compression, Bending, and Torsion in Ultra-Deep Water Depths, Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE05, Halkidiki, Greece, June 12-17 (2005).
Z. Tan, M. Case and T. Sheldrake, Higher Order Effects on Bending of Helical Armour Wire Inside an Unbonded Flexible Pipe, Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE05, Halkidiki, Greece, June 12-17 (2005).
Y. Zhang, B. Chen, L. Qiu, T. Hill and M. Case, State of the Art Analytical Tools Improve Optimization of Unbonded Flexible Pipes for Deepwater Environments, The 2003 Offshore Technology Conference, Houston, Texas, USA, May 5-8 (2003).
A. Bahtui, H. Bahai and G. Alfano, ASME J. Offshore Mech. Arct. Eng., 130, 041301 (2008); doi:10.1115/1.2948956.
J.R.M. de Sousa, C. Magluta, N. Roitman, G.B. Ellwanger, E.C.P. Lima and A. Papaleo, Appl. Ocean Res., 31, 157 (2009); doi:10.1016/j.apor.2009.07.005.
M.H. Fu and J.R. Yin, Chinese J. Theor. Appl. Mechan., 31, 113 (1999) (in Chinese).
W. Wang and G. Chen, China Ocean Eng., 25, 737 (2011); doi:10.1007/s13344-011-0059-9.