Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Aluminum on Thermal Performance of Ceramsite and its Application
Corresponding Author(s) : Weiwei Wu
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
Thermal performance, such as the thermal resistance and thermal conductivity of ceramsite under the effect of aluminum, were measured. A holistic model was developed to measure the thermal performance. Different ceramsite insulation structures were selected for simulating and comparing. By simulating the holistic model, it was found that aluminum greatly promotes the thermal resistance of ceramsite to twice the thermal resistance of ceramsite. The average thermal conductivity of ceramsite under the effect of aluminum is decreased by 50 %. The marginal thermal resistance of the ceramsite insulation structure stuck on aluminum foil internally is almost the same as that of the widely used ceramsite hollow brick with EPS board and it is incombustible, which implies a better structure for architectural heat insulation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S. Baspinar, I. Demir and M. Orhan, 28, 2 (2010).
- O.O. Oluwole, J.S. Joshua and H.O. Nwagwo, J. Miner. Mater. Charact. Eng., 11 (2012).
- B.J. Lee and S. Pessiki, Precast/Prestressed Concr. Instit. J., 53, 86 (2008).
- B.J. Lee and S. Pessiki, Precast/Prestressed Concr. Instit. J., 49, 88 (2004).
- J. Sun and L. Fang, Int. J. Heat Mass Transfer, 52, 5598 (2009); doi:10.1016/j.ijheatmasstransfer.2009.06.008.
- I. Aiad, A.A. Mohammed and S.A. Abo-EL-Enein, Cement Concr. Res., 33, 9 (2003); doi:10.1016/S0008-8846(02)00911-0.
- Y. Gao, J.J. Roux, C. Teodosiu and L.H. Zhao, Energy Build., 36, 1107 (2004); doi:10.1016/j.enbuild.2004.03.008.
- H. Kus, E. Özkan, Ö. Göcer and E. Edis, Constr. Build. Mater., 38, 837 (2013); doi:10.1016/j.conbuildmat.2012.09.053.
- A. Kviklys and R. Levinskas, Mater. Res. Innov., 7, 258 (2003); doi:10.1007/s10019-003-0246-2.
- N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes and R.E. Cohen, Polymer, 45, 487 (2004); doi:10.1016/j.polymer.2003.10.100.
- T. Blomberg, Heat2-A Heat Transfer PCProgram: Manual for Heat2, Department of Building Physics, Lund University, p. 22-27 (1991).
- T. Blomberg, Heat3-A PC-program for Heat Transfer in Three Dimensions, Manual with Brief Theory and Examples, Lund University, pp. 20-30 (2000).
- A. Łowińska-Kluge and T. Błaszczyński, Arch. Civ. Mech. Eng., 12, 219 (2012); doi:10.1016/j.acme.2012.03.002.
- D. Al-Homoud and S. Mohammad, Build. Environ., 40, 353 (2005); doi:10.1016/j.buildenv.2004.05.013.
- Y. Ballim, Cement Concr. Compos., 26, 695 (2004); doi:10.1016/S0958-9465(03)00093-3.
- D. Kolokotsa, D. Rovas, E. Kosmatopoulos and K. Kalaitzakis, Sol. Energy, 85, 3067 (2011); doi:10.1016/j.solener.2010.09.001.
- M. Boubekri, A. Chaker and A. Cheknane, Rev. Éner. Renouvelables, 12, 355 (2009).
- S.A. Kalogirou, Renew. Energy, 23, 247 (2001); doi:10.1016/S0960-1481(00)00176-2.
- P. Heyne, P.J. Boettke and D.L. Prychitko, The Economic Way of Thinking, Prentice Hall, pp. 317-318 (2010).
- A. Levy, Eur. J. Oper. Res., 164, 548 (2005); doi:10.1016/j.ejor.2003.12.017.
- H. Bleichrodt and J. Quiggin, J. Health Econ., 18, 681 (1999); doi:10.1016/S0167-6296(99)00014-4.
References
M.S. Baspinar, I. Demir and M. Orhan, 28, 2 (2010).
O.O. Oluwole, J.S. Joshua and H.O. Nwagwo, J. Miner. Mater. Charact. Eng., 11 (2012).
B.J. Lee and S. Pessiki, Precast/Prestressed Concr. Instit. J., 53, 86 (2008).
B.J. Lee and S. Pessiki, Precast/Prestressed Concr. Instit. J., 49, 88 (2004).
J. Sun and L. Fang, Int. J. Heat Mass Transfer, 52, 5598 (2009); doi:10.1016/j.ijheatmasstransfer.2009.06.008.
I. Aiad, A.A. Mohammed and S.A. Abo-EL-Enein, Cement Concr. Res., 33, 9 (2003); doi:10.1016/S0008-8846(02)00911-0.
Y. Gao, J.J. Roux, C. Teodosiu and L.H. Zhao, Energy Build., 36, 1107 (2004); doi:10.1016/j.enbuild.2004.03.008.
H. Kus, E. Özkan, Ö. Göcer and E. Edis, Constr. Build. Mater., 38, 837 (2013); doi:10.1016/j.conbuildmat.2012.09.053.
A. Kviklys and R. Levinskas, Mater. Res. Innov., 7, 258 (2003); doi:10.1007/s10019-003-0246-2.
N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes and R.E. Cohen, Polymer, 45, 487 (2004); doi:10.1016/j.polymer.2003.10.100.
T. Blomberg, Heat2-A Heat Transfer PCProgram: Manual for Heat2, Department of Building Physics, Lund University, p. 22-27 (1991).
T. Blomberg, Heat3-A PC-program for Heat Transfer in Three Dimensions, Manual with Brief Theory and Examples, Lund University, pp. 20-30 (2000).
A. Łowińska-Kluge and T. Błaszczyński, Arch. Civ. Mech. Eng., 12, 219 (2012); doi:10.1016/j.acme.2012.03.002.
D. Al-Homoud and S. Mohammad, Build. Environ., 40, 353 (2005); doi:10.1016/j.buildenv.2004.05.013.
Y. Ballim, Cement Concr. Compos., 26, 695 (2004); doi:10.1016/S0958-9465(03)00093-3.
D. Kolokotsa, D. Rovas, E. Kosmatopoulos and K. Kalaitzakis, Sol. Energy, 85, 3067 (2011); doi:10.1016/j.solener.2010.09.001.
M. Boubekri, A. Chaker and A. Cheknane, Rev. Éner. Renouvelables, 12, 355 (2009).
S.A. Kalogirou, Renew. Energy, 23, 247 (2001); doi:10.1016/S0960-1481(00)00176-2.
P. Heyne, P.J. Boettke and D.L. Prychitko, The Economic Way of Thinking, Prentice Hall, pp. 317-318 (2010).
A. Levy, Eur. J. Oper. Res., 164, 548 (2005); doi:10.1016/j.ejor.2003.12.017.
H. Bleichrodt and J. Quiggin, J. Health Econ., 18, 681 (1999); doi:10.1016/S0167-6296(99)00014-4.