Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Pseudomonas cepacia Lipase Immobilized onto Chitosan-Coated Activated Carbon: An Efficient Catalyst for Transesterification Enantiomer Resolution of (R,S)-1-Phenyl-3- buten-1-ol
Corresponding Author(s) : Weiguang Su
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
Pseudomonas cepacia lipase (PSL) immobilized onto chitosan-coated activated carbon (CS-AC) with specific surface area of 798 (m2/g), average pore diameter of 2.13 nm and pore volume of 0.43 cm3/g was synthesized by a simple adsorption method. The immobilized lipase PSL/CS-AC catalyst exhibited enhanced catalytic activity for resolving racemic 1-phenyl-3-buten-1-ol compared to free PSL and PSL immobilized on sole activated carbon or chitosan. The enantiomeric excess value (ees) of (S)-1-phenyl-3-buten-1-ol and the enantiomeric excess value (eep) of (R)-1-phenyl-3-buten-1-ol acetate reached 99 and 94 %, respectively with the reaction substrate conversion of 51 %. PSL/CS-AC immobilized lipase exposed the more surface active sites resulting in the higher catalytic performances. The preparation of the support for immobilizing lipase is low cost and the reaction conditions are moderate and environmentally friendly. The immobilized lipase PSL/CS-AC catalyst possessed of high thermal stability, reusability and storage stability, it could be a potential chiral catalyst for enantiomer resolution reactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.W. Zheng and J.H. Xu, Curr. Opin. Biotechnol., 22, 784 (2011); doi:10.1016/j.copbio.2011.07.002.
- R.N. Patel, Food Technol. Biotechnol., 42, 305 (2004).
- A. Arefolov and J.S. Panek, Org. Lett., 4, 2397 (2002); doi:10.1021/ol026139r.
- T.P. Loh, Q.Y. Hu and J.J. Vittal, Synlett., 523 (2000); doi:10.1055/s-2000-6579.
- S. Singh, S. Kumar and S.S. Chimni, Tetrahedron Asymm., 13, 2679 (2002); doi:10.1016/S0957-4166(02)00743-7.
- A. Ghanem and H.Y. Aboul-Enein, Tetrahedron, 15, 3331 (2004); doi:10.1016/j.tetasy.2004.09.019.
- M. Nagarl, S.K. Dwivedi and D. Shrivastava, Int. J. Pharm. Res. Sci., 2, 631 (2013).
- Q. Wu, P. Soni and M.T. Reetz, J. Am. Chem. Soc., 135, 1872 (2013); doi:10.1021/ja310455t.
- R.C. Rodrigues, C. Ortiz, Á. Berenguer-Murcia, R. Torres and R. Fernández-Lafuente, Chem. Soc. Rev., 42, 6290 (2013); doi:10.1039/c2cs35231a.
- S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor, P. Spizzo and L. Gardossi, Chem. Soc. Rev., 42, 6262 (2013); doi:10.1039/C3CS35464D.
- G. Yang, J. Wu, G. Xu and L. Yang, J. Mol. Catal. B, 57, 96 (2009); doi:10.1016/j.molcatb.2008.07.003.
- A.S. Rani, M.L.M. Das and S. Satyanarayana, J. Mol. Catal. B, 10, 471 (2000); doi:10.1016/S1381-1177(99)00116-2.
- A.G. Kumar, S. Swarnalatha, P. Kamatchi and G. Sekaran, Biochem. Eng. J., 43, 185 (2009); doi:10.1016/j.bej.2008.09.017.
- J.C. Naranjo, A. Córdoba, L. Giraldo, V.S. García and J.C. Moreno-Piraján, J. Mol. Catal. B, 66, 166 (2010); doi:10.1016/j.molcatb.2010.05.002.
- J. Miao, F. Zhang, M. Takieddin, S. Mousa and R.J. Linhardt, Langmuir, 28, 4396 (2012); doi:10.1021/la3000137.
- K. Ramani, S. Karthikeyan, R. Boopathy, L.J. Kennedy, A.B. Mandal and G. Sekaran, Process Biochem., 47, 435 (2012); doi:10.1016/j.procbio.2011.11.025.
- B. Krajewska, Enzyme Microb. Technol., 35, 126 (2004); doi:10.1016/j.enzmictec.2003.12.013.
- V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal and S. Dhawan, Int. J. Pharm., 274, 1 (2004); doi:10.1016/j.ijpharm.2003.12.026.
References
G.W. Zheng and J.H. Xu, Curr. Opin. Biotechnol., 22, 784 (2011); doi:10.1016/j.copbio.2011.07.002.
R.N. Patel, Food Technol. Biotechnol., 42, 305 (2004).
A. Arefolov and J.S. Panek, Org. Lett., 4, 2397 (2002); doi:10.1021/ol026139r.
T.P. Loh, Q.Y. Hu and J.J. Vittal, Synlett., 523 (2000); doi:10.1055/s-2000-6579.
S. Singh, S. Kumar and S.S. Chimni, Tetrahedron Asymm., 13, 2679 (2002); doi:10.1016/S0957-4166(02)00743-7.
A. Ghanem and H.Y. Aboul-Enein, Tetrahedron, 15, 3331 (2004); doi:10.1016/j.tetasy.2004.09.019.
M. Nagarl, S.K. Dwivedi and D. Shrivastava, Int. J. Pharm. Res. Sci., 2, 631 (2013).
Q. Wu, P. Soni and M.T. Reetz, J. Am. Chem. Soc., 135, 1872 (2013); doi:10.1021/ja310455t.
R.C. Rodrigues, C. Ortiz, Á. Berenguer-Murcia, R. Torres and R. Fernández-Lafuente, Chem. Soc. Rev., 42, 6290 (2013); doi:10.1039/c2cs35231a.
S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor, P. Spizzo and L. Gardossi, Chem. Soc. Rev., 42, 6262 (2013); doi:10.1039/C3CS35464D.
G. Yang, J. Wu, G. Xu and L. Yang, J. Mol. Catal. B, 57, 96 (2009); doi:10.1016/j.molcatb.2008.07.003.
A.S. Rani, M.L.M. Das and S. Satyanarayana, J. Mol. Catal. B, 10, 471 (2000); doi:10.1016/S1381-1177(99)00116-2.
A.G. Kumar, S. Swarnalatha, P. Kamatchi and G. Sekaran, Biochem. Eng. J., 43, 185 (2009); doi:10.1016/j.bej.2008.09.017.
J.C. Naranjo, A. Córdoba, L. Giraldo, V.S. García and J.C. Moreno-Piraján, J. Mol. Catal. B, 66, 166 (2010); doi:10.1016/j.molcatb.2010.05.002.
J. Miao, F. Zhang, M. Takieddin, S. Mousa and R.J. Linhardt, Langmuir, 28, 4396 (2012); doi:10.1021/la3000137.
K. Ramani, S. Karthikeyan, R. Boopathy, L.J. Kennedy, A.B. Mandal and G. Sekaran, Process Biochem., 47, 435 (2012); doi:10.1016/j.procbio.2011.11.025.
B. Krajewska, Enzyme Microb. Technol., 35, 126 (2004); doi:10.1016/j.enzmictec.2003.12.013.
V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal and S. Dhawan, Int. J. Pharm., 274, 1 (2004); doi:10.1016/j.ijpharm.2003.12.026.