Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Physical Simulation Test for Developing Composite Materials of Non-Hydrophilic Aquifuge in Water-Preserved Mining
Corresponding Author(s) : Hai Sun
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
With the fluid-solid coupling similar principle, composite materials of aquifuge are developed by physical simulation test for fluid-solid coupling in water-preserved mining and a rational proportion of non-hydrophilic is studied. Sand and gypsum are adopted as the aggregate of physical simulation materials, while vaseline and silicone oil are served as cementing agent. Firstly, water-physical properties of the material, including water absorption, permeability, distensibility and fluid-solid coupling softening effect, have been studied. Then, basic mechanical property of the material, plasticity has been tested on this basis. Finally, a series of rational proportions fit for aquifuge materials have been discovered, i.e., the weight ratios of sand and gypsum is between 5:1 and 7:1, aggregate and cementing agent between 6:1 and 8:1 and vaseline and silicone oil between 1:1 and 3:1. The research results not only can provide a basis for the research of water-preserved mining by physical simulation test, but also can be used for other engineering projects in need of non-hydrophilic composite materials with good plasticity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Palchik, Environ. Geol., 44, 28 (2003); doi:10.1007/s00254-002-0732-7.
- H. Hanfu, W. Changshen, B. Haibo and W. Zihe, Int. J. Mining Sci. Technol., 22, 719 (2012); doi:10.1016/j.ijmst.2012.08.022.
- Z. Bian, X. Miao, S. Lei, S. Chen, W. Wang and S. Struthers, J. Sci., 337, 702 (2012); doi:10.1126/science.1224757.
- Q. Huang, W. Zhang and Z. Hou, Chin. J. Rock Mechanics Eng., 29, 2813 (2010).
- S. Li, X. Feng and S. Li, Chin. J. Rock Mechanics Eng., 29, 281 (2010).
- Y.D. Liu, D.S. Zhang, G.W. Fan and S.F. Yan, Min. Sci. Technol., 21, 381 (2011).
- L. Ma, X. Du and F. Wang, J. Disaster Adv., 6, 268 (2013).
- L. Ma, X. Cao and Q. Liu, Environ. Eng. Manage. J., 12, 1797 (2013).
- M. Souley, F. Homand, S. Pepa and D. Hoxha, J. Int. J. Rock Mechanics Mining Sci., 38, 297 (2001); doi:10.1016/S1365-1609(01)00002-8.
- L. Li, M. Qian and Y. Yin, Coal Geol. Explor., 25, 33 (1996).
- H. Pu, X. Miao, B. Yao and M. Tian, J. China Univ. Mining Technol., 18, 353 (2008); doi:10.1016/S1006-1266(08)60074-7.
References
V. Palchik, Environ. Geol., 44, 28 (2003); doi:10.1007/s00254-002-0732-7.
H. Hanfu, W. Changshen, B. Haibo and W. Zihe, Int. J. Mining Sci. Technol., 22, 719 (2012); doi:10.1016/j.ijmst.2012.08.022.
Z. Bian, X. Miao, S. Lei, S. Chen, W. Wang and S. Struthers, J. Sci., 337, 702 (2012); doi:10.1126/science.1224757.
Q. Huang, W. Zhang and Z. Hou, Chin. J. Rock Mechanics Eng., 29, 2813 (2010).
S. Li, X. Feng and S. Li, Chin. J. Rock Mechanics Eng., 29, 281 (2010).
Y.D. Liu, D.S. Zhang, G.W. Fan and S.F. Yan, Min. Sci. Technol., 21, 381 (2011).
L. Ma, X. Du and F. Wang, J. Disaster Adv., 6, 268 (2013).
L. Ma, X. Cao and Q. Liu, Environ. Eng. Manage. J., 12, 1797 (2013).
M. Souley, F. Homand, S. Pepa and D. Hoxha, J. Int. J. Rock Mechanics Mining Sci., 38, 297 (2001); doi:10.1016/S1365-1609(01)00002-8.
L. Li, M. Qian and Y. Yin, Coal Geol. Explor., 25, 33 (1996).
H. Pu, X. Miao, B. Yao and M. Tian, J. China Univ. Mining Technol., 18, 353 (2008); doi:10.1016/S1006-1266(08)60074-7.