Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of CdS/TiO2 Nanotube-Array Composite Photocatalysts Prepared by Electrodeposition
Corresponding Author(s) : C.T. Wang
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
Titania nanotube arrays were prepared by titanium anodizing, then CdS/TiO2 nanotube arrays composite photocatalysts were prepared by an AC electrodeposition method for different times. The morphology and crystal structure of the CdS/TiO2 composite photocatalysts were characterized by SEM and XRD. The photoelectrochemical properties of the composites were investigated by means of UV-visible absorption spectra and photocurrent measurements. The photocatalytic activity was evaluated by the degradation of methyl orange under UV-visible light irradiation. The results show that there is an optimum deposited time for the highest photocatalytical activity of the CdS/TiO2 composite photocatalysts under UV-visible light irradiation and the optimum deposited time is determined to 3 min.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); doi:10.1038/238037a0.
- J.S. Hong, D.S. Choi, M.G. Kang, D. Kim and K.-J. Kim, J. Photochem. Photobiol. Chem., 143, 87 (2001); doi:10.1016/S1010-6030(01)00455-5.
- K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.-S. Choi and C.A. Grimes, J. Phys. Chem. C, 113, 6327 (2009); doi:10.1021/jp809385x.
- F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou and J.-M. Liu, Adv. Mater., 19, 2889 (2007); doi:10.1002/adma.200602377.
- X.M. Song, J.M. Wu and M. Yan, Electrochem. Commun., 11, 2203 (2009); doi:10.1016/j.elecom.2009.09.031.
- J.S. Jang, S.M. Ji, S.W. Bae, H.C. Son and J.S. Lee, J. Photochem. Photobiol. Chem., 188, 112 (2007); doi:10.1016/j.jphotochem.2006.11.027.
- W. Chengyu, S. Huamei, T. Ying, Y. Tongsuo and Z. Guowu, Sep. Purif. Technol., 32, 357 (2003); doi:10.1016/S1383-5866(03)00058-3.
- J.S. Jang, H.G. Kim, U.A. Joshi, J.W. Jang and J.S. Lee, Int. J. Hydrogen Energy, 33, 5975 (2008); doi:10.1016/j.ijhydene.2008.07.105.
- H.H. Park, I.S. Park, K.S. Kim, W.Y. Jeon, B.K. Park, H.S. Kim, T.S. Bae and M.H. Lee, Electrochim. Acta, 55, 6109 (2010); doi:10.1016/j.electacta.2010.05.082.
- D. Routkevitch, T. Bigioni, M. Moskovits and J.M. Xu, J. Phys. Chem., 100, 14037 (1996); doi:10.1021/jp952910m.
References
A. Fujishima and K. Honda, Nature, 238, 37 (1972); doi:10.1038/238037a0.
J.S. Hong, D.S. Choi, M.G. Kang, D. Kim and K.-J. Kim, J. Photochem. Photobiol. Chem., 143, 87 (2001); doi:10.1016/S1010-6030(01)00455-5.
K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.-S. Choi and C.A. Grimes, J. Phys. Chem. C, 113, 6327 (2009); doi:10.1021/jp809385x.
F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou and J.-M. Liu, Adv. Mater., 19, 2889 (2007); doi:10.1002/adma.200602377.
X.M. Song, J.M. Wu and M. Yan, Electrochem. Commun., 11, 2203 (2009); doi:10.1016/j.elecom.2009.09.031.
J.S. Jang, S.M. Ji, S.W. Bae, H.C. Son and J.S. Lee, J. Photochem. Photobiol. Chem., 188, 112 (2007); doi:10.1016/j.jphotochem.2006.11.027.
W. Chengyu, S. Huamei, T. Ying, Y. Tongsuo and Z. Guowu, Sep. Purif. Technol., 32, 357 (2003); doi:10.1016/S1383-5866(03)00058-3.
J.S. Jang, H.G. Kim, U.A. Joshi, J.W. Jang and J.S. Lee, Int. J. Hydrogen Energy, 33, 5975 (2008); doi:10.1016/j.ijhydene.2008.07.105.
H.H. Park, I.S. Park, K.S. Kim, W.Y. Jeon, B.K. Park, H.S. Kim, T.S. Bae and M.H. Lee, Electrochim. Acta, 55, 6109 (2010); doi:10.1016/j.electacta.2010.05.082.
D. Routkevitch, T. Bigioni, M. Moskovits and J.M. Xu, J. Phys. Chem., 100, 14037 (1996); doi:10.1021/jp952910m.