Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Photocatalysis of Mesoporous TiO2
Corresponding Author(s) : Shiying Zhang
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
The mesoporous TiO2 nanoparticulate has been prepared by evaporation induced self-assembly method using EO-PO type polyether P123 as a template. The small angle X-ray diffraction, wide angle X-ray diffraction, high-resolution transmission electron microscopy and N2 isothermal adsorption-desorption are used to study the microstructure and morphology of the as-synthesized mesoporous TiO2. The results demonstrate that the mesoporous TiO2 belongs to anatase and the size is 20-30 nm. The sample is prepared using P123 as a template with average pore size distribution of 11.54 nm, specific surface area of 84.83 m2/g and pore volume of 0.234 cm3/g. The as-synthesized mesoporous TiO2 exhibits remarkably high photocatalytic activity of 93.6 % in decomposing formaldehyde under ultraviolet light irradiations for 90 min. This work provides a basic experimental process for the preparation of mesoporous TiO2, which will possess a broad prospect in terms of the applications in improving indoor air quality.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2008); doi:10.1039/b800489g.
- C. An, S. Peng and Y. Sun, Adv. Mater., 22, 2570 (2010); doi:10.1002/adma.200904116.
- Q. Zhang, J.-B. Joo, Z. Lu, M. Dahl, D.Q.L. Oliveira, M. Ye and Y. Yin, Nano Res., 4, 103 (2011); doi:10.1007/s12274-010-0058-9.
- M. Anpo, Pure Appl. Chem., 72, 1265 (2000); doi:10.1351/pac200072071265.
- Y.P. Liu, L. Fang, H.D. Lu, L.J. Liu, H. Wang and C.Z. Hu, Catal. Commun., 17, 200 (2012); doi:10.1016/j.catcom.2011.11.001.
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); doi:10.1038/238037a0.
- A.J. Cowan, J. Tang, W. Leng, J.R. Durrant and D.R. Klug, J. Phys. Chem. C, 114, 4208 (2010); doi:10.1021/jp909993w.
- H. Bai, Z. Liu and D.D. Sun, Chem. Commun., 46, 6542 (2010); doi:10.1039/c0cc01143f.
- S.S. Tan, L. Zou and E. Hu, Catal. Today, 115, 269 (2006); doi:10.1016/j.cattod.2006.02.057.
- J.Y. Shi, J. Chen, Z.C. Feng, T. Chen, Y.X. Lian, W.L. Wang and C. Li, J. Phys. Chem. C, 111, 693 (2007); doi:10.1021/jp065744z.
- J. Zhang, Q. Xu, Z.C. Feng, M.J. Li and C. Li, Angew. Chem. Int. Ed., 47, 1766 (2008); doi:10.1002/anie.200704788.
- J. Pan, G. Liu, G.Q. Lu and H.M. Cheng, Angew. Chem. Int. Ed., 50, 2133 (2011); doi:10.1002/anie.201006057.
- A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk and N. Serpone, Int. J. Photoenergy, Article ID 258394 (2008); doi:10.1155/2008/258394.
- F.B. Li, X.Z. Li and M.F. Hou, Appl. Catal. B, 48, 185 (2004); doi:10.1016/j.apcatb.2003.10.003.
- D.M. Antonelli, Micropor. Mesopor. Mater., 30, 315 (1999); doi:10.1016/S1387-1811(99)00042-6.
- B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissière, M. Antonietti and C. Sanchez, Chem. Mater., 16, 2948 (2004); doi:10.1021/cm0495966.
- T.V. Anuradha and S. Ranganathan, Bull. Mater. Sci., 30, 263 (2007); doi:10.1007/s12034-007-0046-1.
- G.Q. Liu, Z.G. Jin, X.X. Liu, T. Wang and Z.F. Liu, J. Sol-Gel Sci. Technol., 41, 49 (2007); doi:10.1007/s10971-006-0122-9.
- D. Chen, F. Huang, Y.B. Cheng and R.A. Caruso, Adv. Mater., 21, 2206 (2009); doi:10.1002/adma.200802603.
- C. Bai and M. Liu, Angew. Chem. Int. Ed., 52, 2678 (2013); doi:10.1002/anie.201210058.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985); doi:10.1351/pac198557040603.
References
A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2008); doi:10.1039/b800489g.
C. An, S. Peng and Y. Sun, Adv. Mater., 22, 2570 (2010); doi:10.1002/adma.200904116.
Q. Zhang, J.-B. Joo, Z. Lu, M. Dahl, D.Q.L. Oliveira, M. Ye and Y. Yin, Nano Res., 4, 103 (2011); doi:10.1007/s12274-010-0058-9.
M. Anpo, Pure Appl. Chem., 72, 1265 (2000); doi:10.1351/pac200072071265.
Y.P. Liu, L. Fang, H.D. Lu, L.J. Liu, H. Wang and C.Z. Hu, Catal. Commun., 17, 200 (2012); doi:10.1016/j.catcom.2011.11.001.
A. Fujishima and K. Honda, Nature, 238, 37 (1972); doi:10.1038/238037a0.
A.J. Cowan, J. Tang, W. Leng, J.R. Durrant and D.R. Klug, J. Phys. Chem. C, 114, 4208 (2010); doi:10.1021/jp909993w.
H. Bai, Z. Liu and D.D. Sun, Chem. Commun., 46, 6542 (2010); doi:10.1039/c0cc01143f.
S.S. Tan, L. Zou and E. Hu, Catal. Today, 115, 269 (2006); doi:10.1016/j.cattod.2006.02.057.
J.Y. Shi, J. Chen, Z.C. Feng, T. Chen, Y.X. Lian, W.L. Wang and C. Li, J. Phys. Chem. C, 111, 693 (2007); doi:10.1021/jp065744z.
J. Zhang, Q. Xu, Z.C. Feng, M.J. Li and C. Li, Angew. Chem. Int. Ed., 47, 1766 (2008); doi:10.1002/anie.200704788.
J. Pan, G. Liu, G.Q. Lu and H.M. Cheng, Angew. Chem. Int. Ed., 50, 2133 (2011); doi:10.1002/anie.201006057.
A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk and N. Serpone, Int. J. Photoenergy, Article ID 258394 (2008); doi:10.1155/2008/258394.
F.B. Li, X.Z. Li and M.F. Hou, Appl. Catal. B, 48, 185 (2004); doi:10.1016/j.apcatb.2003.10.003.
D.M. Antonelli, Micropor. Mesopor. Mater., 30, 315 (1999); doi:10.1016/S1387-1811(99)00042-6.
B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissière, M. Antonietti and C. Sanchez, Chem. Mater., 16, 2948 (2004); doi:10.1021/cm0495966.
T.V. Anuradha and S. Ranganathan, Bull. Mater. Sci., 30, 263 (2007); doi:10.1007/s12034-007-0046-1.
G.Q. Liu, Z.G. Jin, X.X. Liu, T. Wang and Z.F. Liu, J. Sol-Gel Sci. Technol., 41, 49 (2007); doi:10.1007/s10971-006-0122-9.
D. Chen, F. Huang, Y.B. Cheng and R.A. Caruso, Adv. Mater., 21, 2206 (2009); doi:10.1002/adma.200802603.
C. Bai and M. Liu, Angew. Chem. Int. Ed., 52, 2678 (2013); doi:10.1002/anie.201210058.
K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985); doi:10.1351/pac198557040603.