Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Sintering Temperature on Electrical Conductivity, Hardness and Friction Properties of Cu/MgB2 Composites
Corresponding Author(s) : Qing Yang
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
The Cu/MgB2 composites with MgB2 content of 10, 20, 30 vol. % were fabricated by pressing-sintering at 800 ºC and repressing-resintering at 900 ºC. The effect of sintering temperature on the properties of Cu/MgB2 composites including the relative density, hardness, friction coefficient and electrical conductivity was investigated. The results showed that the decrease of sintering temperature from 900 to 800 ºC contributed to the increase of relative density and hardness of Cu/MgB2 composites with MgB2 content lower than 30 vol. % and contributed to the increase of friction coefficient and electrical conductively of Cu-20 % MgB2 composite. The properties of Cu/MgB2 composites sintered at 800 ºC, which were lower than those sintered at 900 ºC, were increased and approximated to those sintered at 900 ºC after the repressing-resintering process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Dash, B.C. Ray and D. Chaira, J. Alloys Comp., 516, 78 (2012); doi:10.1016/j.jallcom.2011.11.136.
- G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin and C. Bindal, J. Alloys Comp., 509, 6036 (2011); doi:10.1016/j.jallcom.2011.02.170.
- J.S. Kim, D.V. Dudina, J.C. Kim, Y.S. Kwon, J.J. Park and C.K. Rhee, J. Nanosci. Nanotechnol., 10, 252 (2010); doi:10.1166/jnn.2010.1523.
- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Nature, 410, 63 (2001); doi:10.1038/35065039.
- P.C. Canfield, S.L. Bud’ko and D.K. Finnemore, Physica C, 385, 1 (2003); doi:10.1016/S0921-4534(02)02328-6.
- M.A. Aksan, A. Guldeste, Y. Balci and M.E. Yakinci, Solid State Commun., 137, 320 (2006); doi:10.1016/j.ssc.2005.11.040.
- Z.Q. Ma, Y.C. Liu, Q.Z. Shi, Q. Zhao and Z.M. Gao, Supercond. Sci. Technol., 21, 065004 (2008); doi:10.1088/0953-2048/21/6/065004.
- Y. Tang, X. Kong and J. Zang, Physica C, 469, 1902 (2009); doi:10.1016/j.physc.2009.06.004.
- N.S. AlZayed, I.V. Kityk, S. Soltan, A. Wojciechowski, A.O. Fedorchuk, G. Lakshminarayana and M. Shahabuddin, J. Alloys Comp., 594, 60 (2014); doi:10.1016/j.jallcom.2014.01.035.
- P.C. Canfield, D.K. Finnemore, S.L. Bud’ko, J.E. Ostenson, G. Lapertot, C.E. Cunningham and C. Petrovic, Phys. Rev. Lett., 86, 2423 (2001); doi:10.1103/PhysRevLett.86.2423.
- W. Goldacker, S.I. Schlachter, S. Zimmer and H. Reiner, Supercond. Sci. Technol., 14, 787 (2001); doi:10.1088/0953-2048/14/9/331.
- D.B. Liu, M.F. Chen, A. Rauf, C.X. Cui and J.J. Tan, J. Alloys Comp., 466, 87 (2008); doi:10.1016/j.jallcom.2007.11.022.
- Q. Yang, J. Zou, Z. Liu and X. Yu, Mater. Sci. Forum, 749, 141 (2013); doi:10.4028/www.scientific.net/MSF.749.141.
- M. Rahimian, N. Ehsani, N. Parvin and H.R. Baharvandi, Mater. Des., 30, 3333 (2009); doi:10.1016/j.matdes.2008.11.027.
- M. Rahimian, N. Ehsani, N. Parvin and H.R. Baharvandi, J. Mater. Process. Technol., 209, 5387 (2009); doi:10.1016/j.jmatprotec.2009.04.007.
- B. Leszczynska-Madej, Arch. Metall. Mater., 58, 43 (2013); doi:10.2478/v10172-012-0148-7.
References
K. Dash, B.C. Ray and D. Chaira, J. Alloys Comp., 516, 78 (2012); doi:10.1016/j.jallcom.2011.11.136.
G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin and C. Bindal, J. Alloys Comp., 509, 6036 (2011); doi:10.1016/j.jallcom.2011.02.170.
J.S. Kim, D.V. Dudina, J.C. Kim, Y.S. Kwon, J.J. Park and C.K. Rhee, J. Nanosci. Nanotechnol., 10, 252 (2010); doi:10.1166/jnn.2010.1523.
J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Nature, 410, 63 (2001); doi:10.1038/35065039.
P.C. Canfield, S.L. Bud’ko and D.K. Finnemore, Physica C, 385, 1 (2003); doi:10.1016/S0921-4534(02)02328-6.
M.A. Aksan, A. Guldeste, Y. Balci and M.E. Yakinci, Solid State Commun., 137, 320 (2006); doi:10.1016/j.ssc.2005.11.040.
Z.Q. Ma, Y.C. Liu, Q.Z. Shi, Q. Zhao and Z.M. Gao, Supercond. Sci. Technol., 21, 065004 (2008); doi:10.1088/0953-2048/21/6/065004.
Y. Tang, X. Kong and J. Zang, Physica C, 469, 1902 (2009); doi:10.1016/j.physc.2009.06.004.
N.S. AlZayed, I.V. Kityk, S. Soltan, A. Wojciechowski, A.O. Fedorchuk, G. Lakshminarayana and M. Shahabuddin, J. Alloys Comp., 594, 60 (2014); doi:10.1016/j.jallcom.2014.01.035.
P.C. Canfield, D.K. Finnemore, S.L. Bud’ko, J.E. Ostenson, G. Lapertot, C.E. Cunningham and C. Petrovic, Phys. Rev. Lett., 86, 2423 (2001); doi:10.1103/PhysRevLett.86.2423.
W. Goldacker, S.I. Schlachter, S. Zimmer and H. Reiner, Supercond. Sci. Technol., 14, 787 (2001); doi:10.1088/0953-2048/14/9/331.
D.B. Liu, M.F. Chen, A. Rauf, C.X. Cui and J.J. Tan, J. Alloys Comp., 466, 87 (2008); doi:10.1016/j.jallcom.2007.11.022.
Q. Yang, J. Zou, Z. Liu and X. Yu, Mater. Sci. Forum, 749, 141 (2013); doi:10.4028/www.scientific.net/MSF.749.141.
M. Rahimian, N. Ehsani, N. Parvin and H.R. Baharvandi, Mater. Des., 30, 3333 (2009); doi:10.1016/j.matdes.2008.11.027.
M. Rahimian, N. Ehsani, N. Parvin and H.R. Baharvandi, J. Mater. Process. Technol., 209, 5387 (2009); doi:10.1016/j.jmatprotec.2009.04.007.
B. Leszczynska-Madej, Arch. Metall. Mater., 58, 43 (2013); doi:10.2478/v10172-012-0148-7.