Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Magnetic Properties of Manganese-Iron Multi-Metal Cyanide Compound Ni1.15Mn0.35[Fe(CN)6]·6H2O
Corresponding Author(s) : Qing Lin
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
A multi-metal prussian blue compound Ni1.15Mn0.35[Fe(CN)6]·6H2O has been synthesized. The IR spectrum of the compound shows two bands at 2096.42 and 2162.13 cm-1 indicating the existence of two types of cyanide groups.It undergoes a paramagnetic to ferromagnetic transition at 21 K. These results indicate that there exist a ferromagnetic exchange interaction in the complexes. According to Curie-Weiss law,paramagnetic Curie temperature (Q) is 13.81 K and the Curie-Weiss constant (C) is 2.21 cm3 K mol-1. In addition, the c’(T) and c’’ (T) show clear peak around 18-20 K. The behaviour of c’ and c’’ is typical of a spin glass state go through a maximum with strong frequency dependence. The observed value of coercive field (Hc) and remanent magnetization (Mr) for the compound are 1.72 KOe and 0.682 μb, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ohkoshi, T. Iyoda, A. Fujishima and K. Hashimoto, Phys. Rev. B, 56, 11642 (1997); doi:10.1103/PhysRevB.56.11642.
- O. Sato, Acc. Chem. Res., 36, 692 (2003); doi:10.1021/ar020242z.
- S. Ohkoshi, O. Sato, T. Iyoda, A. Fujishima and K. Hashimoto, Inorg. Chem., 36, 268 (1997); doi:10.1021/ic960978q.
- S. Ohkoshi, T. Hozumi and K. Hashimoto, Phys. Rev. B, 64, 132404 (2001); doi:10.1103/PhysRevB.64.132404.
- S. Ohkoshi, Y. Abe, A. Fujishima and K. Hashimoto, Rev. Lett., 82, 1285 (1999); doi:10.1103/PhysRevLett.82.1285.
- V. Gadet, T. Mallah, I. Castro, M. Verdaguer and P. Veillet, J. Am. Chem. Soc., 114, 9213 (1992); doi:10.1021/ja00049a078.
- M. Verdaguer and G. Girolami, Magnetic Prussian Blue Analogs, Wiley-VCH Verlag GmbH and Co. (2004).
- S. Juszczyk, C. Johansson, M. Hanson, A. Ratuszna and G. Malecki, J. Phys. Condens. Matter, 6, 5697 (1994); doi:10.1088/0953-8984/6/29/012.
- S. Ferlay, T. Mallah, R. Ouahès, P. Veillet and M. Verdaguer, Nature, 378, 701 (1995); doi:10.1038/378701a0.
- A. Kumar and S.M. Yusuf, Physica B, 362, 278 (2005); doi:10.1016/j.physb.2005.02.024.
- D. Gatteschi, O. Kahn, J.S. Miller and F. Palacio, NATO ASI Series E: Applied Science, p. 198 (1991).
- D. Zhang, Z. Zhao and X. Chen, Asian J. Chem., 25, 3509 (2013); doi:10.14233/ajchem.2013.13622.
- O. Sato, Y. Einaga, A. Fujishima and K. Hashimoto, Inorg. Chem., 38, 4405 (1999); doi:10.1021/ic980741p.
- M. Ohba and H. Okawa, Coord. Chem. Rev., 198, 313 (2000); doi:10.1016/S0010-8545(00)00233-2.
- A. Kumar, S.M. Yusuf and L. Keller, Physica B, 385–386, 444 (2006); doi:10.1016/j.physb.2006.05.147.
- J.S. Miller, A.J. Epstein and W.M. Reiff, Chem. Rev., 88, 201 (1988); doi:10.1021/cr00083a010.
- S.M. Holmes and G.S. Girolami, J. Am. Chem. Soc., 121, 5593 (1999); doi:10.1021/ja990946c.
- J.S. Miller and A.J. Epstein, Angew. Chem. Int. Ed. Engl., 33, 385 (1994); doi:10.1002/anie.199403851.
- S. Ohkoshi and K. Hashimoto, Phys. Rev. B, 60, 12820 (1999); doi:10.1103/PhysRevB.60.12820.
- D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett., 35, 1792 (1975); doi:10.1103/PhysRevLett.35.1792.
- A. Kumar, S.M. Yusuf and L. Keller, Phys. Rev. B, 71, 054414 (2005); doi:10.1103/PhysRevB.71.054414.
- K. Binder and A.P. Young, Rev. Mod. Phys., 58, 801 (1986); doi:10.1103/RevModPhys.58.801.
References
S. Ohkoshi, T. Iyoda, A. Fujishima and K. Hashimoto, Phys. Rev. B, 56, 11642 (1997); doi:10.1103/PhysRevB.56.11642.
O. Sato, Acc. Chem. Res., 36, 692 (2003); doi:10.1021/ar020242z.
S. Ohkoshi, O. Sato, T. Iyoda, A. Fujishima and K. Hashimoto, Inorg. Chem., 36, 268 (1997); doi:10.1021/ic960978q.
S. Ohkoshi, T. Hozumi and K. Hashimoto, Phys. Rev. B, 64, 132404 (2001); doi:10.1103/PhysRevB.64.132404.
S. Ohkoshi, Y. Abe, A. Fujishima and K. Hashimoto, Rev. Lett., 82, 1285 (1999); doi:10.1103/PhysRevLett.82.1285.
V. Gadet, T. Mallah, I. Castro, M. Verdaguer and P. Veillet, J. Am. Chem. Soc., 114, 9213 (1992); doi:10.1021/ja00049a078.
M. Verdaguer and G. Girolami, Magnetic Prussian Blue Analogs, Wiley-VCH Verlag GmbH and Co. (2004).
S. Juszczyk, C. Johansson, M. Hanson, A. Ratuszna and G. Malecki, J. Phys. Condens. Matter, 6, 5697 (1994); doi:10.1088/0953-8984/6/29/012.
S. Ferlay, T. Mallah, R. Ouahès, P. Veillet and M. Verdaguer, Nature, 378, 701 (1995); doi:10.1038/378701a0.
A. Kumar and S.M. Yusuf, Physica B, 362, 278 (2005); doi:10.1016/j.physb.2005.02.024.
D. Gatteschi, O. Kahn, J.S. Miller and F. Palacio, NATO ASI Series E: Applied Science, p. 198 (1991).
D. Zhang, Z. Zhao and X. Chen, Asian J. Chem., 25, 3509 (2013); doi:10.14233/ajchem.2013.13622.
O. Sato, Y. Einaga, A. Fujishima and K. Hashimoto, Inorg. Chem., 38, 4405 (1999); doi:10.1021/ic980741p.
M. Ohba and H. Okawa, Coord. Chem. Rev., 198, 313 (2000); doi:10.1016/S0010-8545(00)00233-2.
A. Kumar, S.M. Yusuf and L. Keller, Physica B, 385–386, 444 (2006); doi:10.1016/j.physb.2006.05.147.
J.S. Miller, A.J. Epstein and W.M. Reiff, Chem. Rev., 88, 201 (1988); doi:10.1021/cr00083a010.
S.M. Holmes and G.S. Girolami, J. Am. Chem. Soc., 121, 5593 (1999); doi:10.1021/ja990946c.
J.S. Miller and A.J. Epstein, Angew. Chem. Int. Ed. Engl., 33, 385 (1994); doi:10.1002/anie.199403851.
S. Ohkoshi and K. Hashimoto, Phys. Rev. B, 60, 12820 (1999); doi:10.1103/PhysRevB.60.12820.
D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett., 35, 1792 (1975); doi:10.1103/PhysRevLett.35.1792.
A. Kumar, S.M. Yusuf and L. Keller, Phys. Rev. B, 71, 054414 (2005); doi:10.1103/PhysRevB.71.054414.
K. Binder and A.P. Young, Rev. Mod. Phys., 58, 801 (1986); doi:10.1103/RevModPhys.58.801.