Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Antimicrobial Activities of 2,5-Substituent Hydroquinone Derivatives
Corresponding Author(s) : Hui-Lian Liu
Asian Journal of Chemistry,
Vol. 26 No. 16 (2014): Vol 26 Issue 16
Abstract
A series of 2,5-substituent hydroquinone derivatives were designed and synthesized. Their structures were identified by elemental analysis, 1H NMR, IR spectra. Their assayed antibacterial (Escherichia coli, Bacillus subtilis) and antifungal (Candida albicans) activities were also evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method. The results of biological test showed compounds 1 and 10 have favorable antimicrobial activity with MICs of 20.5, 24.6, 18.9 and 28.6 μg/mL against Escherichia coli and Bacillus subtilis, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Itokawa, N. Totsuka, K. Nakahara, M. Maezuru, K. Takeya, M. Kondo, M. Inamatsu and H. Morita, Chem. Pharm. Bull. (Tokyo), 37, 1619 (1989); doi:10.1248/cpb.37.1619.
- J.S. Swenton, S. Patai and Z. Rappoport, The Chemistry of the Quinonoid Compounds; Vol. 2, Wiley, New York (1988).
- A. Sato, T. Shindo, N. Kasanuki and K. Hasegawa, J. Nat. Prod., 52, 975 (1989); doi:10.1021/np50065a010.
- T. Yamamura, K. Nishiwaki, Y. Tanigaki, S. Terauchi, S. Tomiyama and T. Nishiyama, Bull. Chem. Soc. Jpn., 68, 2955 (1995); doi:10.1246/bcsj.68.2955.
- (a) D.M. Dooley, M.A. McGuirl, D.E. Brown, P.N. Turowski, W.S. Mclntire and P.F. Knowles, Nature, 349, 262 (1991); doi:10.1038/349262a0; (b) D.M. Dooley, R.A. Scott, P.F. Knowles, C.M. Colangelo, M.A. McGuirl and D.E. Brown, J. Am. Chem. Soc., 120, 2599 (1998); doi:10.1021/ja970312a.
- (a) J.P. Klinman, Chem. Rev., 96, 2541 (1996); doi:10.1021/cr950047g; (b) W.S. McIntire, Annu. Rev. Nutr., 18, 145 (1998); doi:10.1146/annurev.nutr.18.1.145.
- R. Calvo, E.C. Abresch, R. Bittl, G. Feher, W. Hofbauer, R.A. Isaacson, W. Lubitz, M.Y. Okamura and M. Paddock, J. Am. Chem. Soc., 122, 7327 (2000); doi:10.1021/ja000399r; C.W. Hoganson, Science, 277, 1953 (1997); doi:10.1126/science.277.5334.1953.
- (a) D.G. Nichols and S.J. Ferguson, Bioenergetics 2, Academic Press, New York (1992); (b) S. Iwata, Science, 281, 64 (1998); doi:10.1126/science.281.5373.64.
- S.X. Wang, M. Mure, K.F. Medzihradsky, A.L. Burlingame, R.A. Brown, D.M. Dooley, A.J. Smith, H.M. Kagan and J.P. Klinman, Science, 273, 1078 (1996); doi:10.1126/science.273.5278.1078.
- C. Basavaraja, N.R. Kim, H.T. Park and D.S. Huh, Bull. Korean Chem. Soc., 30, 907 (2009); doi:10.5012/bkcs.2009.30.4.907.
- T. Bánsági and O. Steinbock, Chaos, 18, 026102 (2008); doi:10.1063/1.2896100.
- P. Cao, X.F. Huang, H. Ding, H.M. Ge, H.Q. Li, B.F. Ruan and H.L. Zhu, Chem. Biodivers., 4, 881 (2007); doi:10.1002/cbdv.200790075.
- J. Meletiadis, J.F. Meis, J.W. Mouton, J.P. Donnelly and P.E. Verweij, J. Clin. Microbiol., 38, 2949 (2000).
References
H. Itokawa, N. Totsuka, K. Nakahara, M. Maezuru, K. Takeya, M. Kondo, M. Inamatsu and H. Morita, Chem. Pharm. Bull. (Tokyo), 37, 1619 (1989); doi:10.1248/cpb.37.1619.
J.S. Swenton, S. Patai and Z. Rappoport, The Chemistry of the Quinonoid Compounds; Vol. 2, Wiley, New York (1988).
A. Sato, T. Shindo, N. Kasanuki and K. Hasegawa, J. Nat. Prod., 52, 975 (1989); doi:10.1021/np50065a010.
T. Yamamura, K. Nishiwaki, Y. Tanigaki, S. Terauchi, S. Tomiyama and T. Nishiyama, Bull. Chem. Soc. Jpn., 68, 2955 (1995); doi:10.1246/bcsj.68.2955.
(a) D.M. Dooley, M.A. McGuirl, D.E. Brown, P.N. Turowski, W.S. Mclntire and P.F. Knowles, Nature, 349, 262 (1991); doi:10.1038/349262a0; (b) D.M. Dooley, R.A. Scott, P.F. Knowles, C.M. Colangelo, M.A. McGuirl and D.E. Brown, J. Am. Chem. Soc., 120, 2599 (1998); doi:10.1021/ja970312a.
(a) J.P. Klinman, Chem. Rev., 96, 2541 (1996); doi:10.1021/cr950047g; (b) W.S. McIntire, Annu. Rev. Nutr., 18, 145 (1998); doi:10.1146/annurev.nutr.18.1.145.
R. Calvo, E.C. Abresch, R. Bittl, G. Feher, W. Hofbauer, R.A. Isaacson, W. Lubitz, M.Y. Okamura and M. Paddock, J. Am. Chem. Soc., 122, 7327 (2000); doi:10.1021/ja000399r; C.W. Hoganson, Science, 277, 1953 (1997); doi:10.1126/science.277.5334.1953.
(a) D.G. Nichols and S.J. Ferguson, Bioenergetics 2, Academic Press, New York (1992); (b) S. Iwata, Science, 281, 64 (1998); doi:10.1126/science.281.5373.64.
S.X. Wang, M. Mure, K.F. Medzihradsky, A.L. Burlingame, R.A. Brown, D.M. Dooley, A.J. Smith, H.M. Kagan and J.P. Klinman, Science, 273, 1078 (1996); doi:10.1126/science.273.5278.1078.
C. Basavaraja, N.R. Kim, H.T. Park and D.S. Huh, Bull. Korean Chem. Soc., 30, 907 (2009); doi:10.5012/bkcs.2009.30.4.907.
T. Bánsági and O. Steinbock, Chaos, 18, 026102 (2008); doi:10.1063/1.2896100.
P. Cao, X.F. Huang, H. Ding, H.M. Ge, H.Q. Li, B.F. Ruan and H.L. Zhu, Chem. Biodivers., 4, 881 (2007); doi:10.1002/cbdv.200790075.
J. Meletiadis, J.F. Meis, J.W. Mouton, J.P. Donnelly and P.E. Verweij, J. Clin. Microbiol., 38, 2949 (2000).