Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Fabrication of Highly Ordered ZrO2-HfO2 Binary Oxides Nanotube Arrays
Corresponding Author(s) : Jinglei Lei
Asian Journal of Chemistry,
Vol. 26 No. 15 (2014): Vol 26 Issue 15
Abstract
The present work demonstrates a facile approach to fabricate highly ordered nanotubular ZrO2-HfO2 binary oxides. Zr-Hf alloy was electrochemically anodized in an ethylene glycol electrolyte containing small amounts of fluoride via a two-step process. The field emission scanning electron microscopy images show the highly ordered nanotube arrays with a length of approximately 6.8 μm, an average diameter of approximate 32 nm and a tube density of 3 × 1010 cm-2 were formed on the Zr-Hf alloy surface. X-ray photoelectron spectroscopy analysis provides evidence that the composition of the formed nanotubes is ZrO2-HfO2 binary oxides. X-ray diffraction studies indicates that monoclinic ZrO2 and HfO2 with small amount of tetragonal phase ZrO2 coexist in the nanotubular binary oxides layer after thermal annealing at 400 °C for 3 h. The present electrochemical approach can be extended to prepare the highly ordered nanotubular oxides with a wide range of composition and functionalities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.S. Hamdy and M. Farahat, Surf. Coat. Technol., 204, 2834 (2010); doi:10.1016/j.surfcoat.2010.02.063.
- M. Andrieux, P. Ribot, C. Gasquères, B. Servet and G. Garry, Appl. Surf. Sci., 263, 284 (2012); doi:10.1016/j.apsusc.2012.09.044.
- H.T. Giang, H.T. Duy, P.Q. Ngan, G.H. Thai, D.T. Thu, D.T. Thu and N.N. Toan, Sens. Actuators B, 183, 550 (2013); doi:10.1016/j.snb.2013.04.035.
- M. Ghatee, M. Hossain Shariat and J. Irvine, J. Mater. Chem., 18, 5237 (2008); doi:10.1039/b811486b.
- R. Guttel, M. Paul and F. Schuth, Chem. Commun., 46, 895 (2010); doi:10.1039/b921792d.
- E. Rossmedgaarden, W. Knowles, T. Kim, M. Wong, W. Zhou, C. Kiely and I. Wachs, J. Catal., 256, 108 (2008); doi:10.1016/j.jcat.2008.03.003.
- A. Zydor and S.D. Elliott, J. Phys. Chem. A, 114, 1879 (2010); doi:10.1021/jp9072608.
- Z. Fang and D.A. Dixon, J. Phys. Chem. C, 117, 7459 (2013); doi:10.1021/jp400228d.
- H.S. Jung, S.A. Lee, S.H. Rha, S.Y. Lee, H.K. Kim, D.H. Kim, K.H. Oh, J.M. Park, W.H. Kim, M.W. Song, N.I. Lee and C.S. Hwang, IEEE Trans. Electron. Dev., 58, 2094 (2011); doi:10.1109/TED.2011.2136380.
- J. Müller, T.S. Böscke, U. Schröder, M. Reinicke, L. Oberbeck, D. Zhou, W. Weinreich, P. Kücher, M. Lemberger and L. Frey, Microelectron. Eng., 86, 1818 (2009); doi:10.1016/j.mee.2009.03.076.
- A. Salaün, H. Grampeix, J. Buckley, C. Mannequin, C. Vallée, P. Gonon, S. Jeannot, C. Gaumer, M. Gros-Jean and V. Jousseaume, Thin Solid Films, 525, 20 (2012); doi:10.1016/j.tsf.2012.10.070.
- L. Zaraska, G.D. Sulka, J. Szeremeta and M. Jaskuła, Electrochim. Acta, 55, 4377 (2010); doi:10.1016/j.electacta.2009.12.054.
- K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch and U. Gösele, ACS Nano, 2, 302 (2008); doi:10.1021/nn7001322.
- D. Losic and D. Losic, Langmuir, 25, 5426 (2009); doi:10.1021/la804281v.
- J.M. Macak, M. Zlamal, J. Krysa and P. Schmuki, Small, 3, 300 (2007); doi:10.1002/smll.200600426.
- L. Li, Z. Zhou, J. Lei, J. He, S. Zhang and F. Pan, Appl. Surf. Sci., 258, 3647 (2012); doi:10.1016/j.apsusc.2011.11.131.
- L. Li, Z. Zhou, J. Lei, J. He, S. Wu and F. Pan, Mater. Lett., 68, 290 (2012); doi:10.1016/j.matlet.2011.10.104.
- T.S. Kang, A.P. Smith, B.E. Taylor and M.F. Durstock, Nano Lett., 9, 601 (2009); doi:10.1021/nl802818d.
- F. Muratore, A. Baron-Wiecheć, A. Gholinia, T. Hashimoto, P. Skeldon and G.E. Thompson, Electrochim. Acta, 58, 389 (2011); doi:10.1016/j.electacta.2011.09.062.
- F. Muratore, A. Baron-Wiecheć, T. Hashimoto, P. Skeldon and G.E. Thompson, Electrochem. Commun., 12, 1727 (2010); doi:10.1016/j.elecom.2010.10.007.
- S. Ismail, Z.A. Ahmad, A. Berenov and Z. Lockman, Corros. Sci., 53, 1156 (2011); doi:10.1016/j.corsci.2010.11.044.
- L. Li, D. Yan, J. Lei, J. He, S. Wu and F. Pan, Mater. Lett., 65, 1434 (2011); doi:10.1016/j.matlet.2011.02.025.
- L. Li, D. Yan, J. Lei, Y. He, J. Xu, N. Li and S. Zhang, Electrochem. Commun., 42, 13 (2014); doi:10.1016/j.elecom.2014.02.004.
- S. Berger, F. Jakubka and P. Schmuki, Electrochem. Solid-State Lett., 12, K45 (2009); doi:10.1149/1.3117253.
- X. Qiu, J.Y. Howe, M.B. Cardoso, O. Polat, W.T. Heller and M. Parans Paranthaman, Nanotechnology, 20, 455601 (2009); doi:10.1088/0957-4484/20/45/455601.
- W. Wei, K. Lee, S. Shaw and P. Schmuki, Chem. Commun., 48, 4244 (2012); doi:10.1039/c2cc31007d.
- J.Z. Ou, R.A. Rani, M.H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner and K. Kalantar-zadeh, ACS Nano, 6, 4045 (2012); doi:10.1021/nn300408p.
- Y.C. Nah, A. Ghicov, D. Kim and P. Schmuki, Electrochem. Commun., 10, 1777 (2008); doi:10.1016/j.elecom.2008.09.017.
- H.A. El-Sayed and V.I. Birss, Nanoscale, 2, 793 (2010); doi:10.1039/c0nr00011f.
- G. He, G.W. Meng, L.D. Zhang and M. Liu, Appl. Phys. Lett., 91, 232910 (2007); doi:10.1063/1.2813620.
- F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN (1991).
- T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, ASM International, Metals Park, OH, edn 2 (1996).
References
A.S. Hamdy and M. Farahat, Surf. Coat. Technol., 204, 2834 (2010); doi:10.1016/j.surfcoat.2010.02.063.
M. Andrieux, P. Ribot, C. Gasquères, B. Servet and G. Garry, Appl. Surf. Sci., 263, 284 (2012); doi:10.1016/j.apsusc.2012.09.044.
H.T. Giang, H.T. Duy, P.Q. Ngan, G.H. Thai, D.T. Thu, D.T. Thu and N.N. Toan, Sens. Actuators B, 183, 550 (2013); doi:10.1016/j.snb.2013.04.035.
M. Ghatee, M. Hossain Shariat and J. Irvine, J. Mater. Chem., 18, 5237 (2008); doi:10.1039/b811486b.
R. Guttel, M. Paul and F. Schuth, Chem. Commun., 46, 895 (2010); doi:10.1039/b921792d.
E. Rossmedgaarden, W. Knowles, T. Kim, M. Wong, W. Zhou, C. Kiely and I. Wachs, J. Catal., 256, 108 (2008); doi:10.1016/j.jcat.2008.03.003.
A. Zydor and S.D. Elliott, J. Phys. Chem. A, 114, 1879 (2010); doi:10.1021/jp9072608.
Z. Fang and D.A. Dixon, J. Phys. Chem. C, 117, 7459 (2013); doi:10.1021/jp400228d.
H.S. Jung, S.A. Lee, S.H. Rha, S.Y. Lee, H.K. Kim, D.H. Kim, K.H. Oh, J.M. Park, W.H. Kim, M.W. Song, N.I. Lee and C.S. Hwang, IEEE Trans. Electron. Dev., 58, 2094 (2011); doi:10.1109/TED.2011.2136380.
J. Müller, T.S. Böscke, U. Schröder, M. Reinicke, L. Oberbeck, D. Zhou, W. Weinreich, P. Kücher, M. Lemberger and L. Frey, Microelectron. Eng., 86, 1818 (2009); doi:10.1016/j.mee.2009.03.076.
A. Salaün, H. Grampeix, J. Buckley, C. Mannequin, C. Vallée, P. Gonon, S. Jeannot, C. Gaumer, M. Gros-Jean and V. Jousseaume, Thin Solid Films, 525, 20 (2012); doi:10.1016/j.tsf.2012.10.070.
L. Zaraska, G.D. Sulka, J. Szeremeta and M. Jaskuła, Electrochim. Acta, 55, 4377 (2010); doi:10.1016/j.electacta.2009.12.054.
K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch and U. Gösele, ACS Nano, 2, 302 (2008); doi:10.1021/nn7001322.
D. Losic and D. Losic, Langmuir, 25, 5426 (2009); doi:10.1021/la804281v.
J.M. Macak, M. Zlamal, J. Krysa and P. Schmuki, Small, 3, 300 (2007); doi:10.1002/smll.200600426.
L. Li, Z. Zhou, J. Lei, J. He, S. Zhang and F. Pan, Appl. Surf. Sci., 258, 3647 (2012); doi:10.1016/j.apsusc.2011.11.131.
L. Li, Z. Zhou, J. Lei, J. He, S. Wu and F. Pan, Mater. Lett., 68, 290 (2012); doi:10.1016/j.matlet.2011.10.104.
T.S. Kang, A.P. Smith, B.E. Taylor and M.F. Durstock, Nano Lett., 9, 601 (2009); doi:10.1021/nl802818d.
F. Muratore, A. Baron-Wiecheć, A. Gholinia, T. Hashimoto, P. Skeldon and G.E. Thompson, Electrochim. Acta, 58, 389 (2011); doi:10.1016/j.electacta.2011.09.062.
F. Muratore, A. Baron-Wiecheć, T. Hashimoto, P. Skeldon and G.E. Thompson, Electrochem. Commun., 12, 1727 (2010); doi:10.1016/j.elecom.2010.10.007.
S. Ismail, Z.A. Ahmad, A. Berenov and Z. Lockman, Corros. Sci., 53, 1156 (2011); doi:10.1016/j.corsci.2010.11.044.
L. Li, D. Yan, J. Lei, J. He, S. Wu and F. Pan, Mater. Lett., 65, 1434 (2011); doi:10.1016/j.matlet.2011.02.025.
L. Li, D. Yan, J. Lei, Y. He, J. Xu, N. Li and S. Zhang, Electrochem. Commun., 42, 13 (2014); doi:10.1016/j.elecom.2014.02.004.
S. Berger, F. Jakubka and P. Schmuki, Electrochem. Solid-State Lett., 12, K45 (2009); doi:10.1149/1.3117253.
X. Qiu, J.Y. Howe, M.B. Cardoso, O. Polat, W.T. Heller and M. Parans Paranthaman, Nanotechnology, 20, 455601 (2009); doi:10.1088/0957-4484/20/45/455601.
W. Wei, K. Lee, S. Shaw and P. Schmuki, Chem. Commun., 48, 4244 (2012); doi:10.1039/c2cc31007d.
J.Z. Ou, R.A. Rani, M.H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner and K. Kalantar-zadeh, ACS Nano, 6, 4045 (2012); doi:10.1021/nn300408p.
Y.C. Nah, A. Ghicov, D. Kim and P. Schmuki, Electrochem. Commun., 10, 1777 (2008); doi:10.1016/j.elecom.2008.09.017.
H.A. El-Sayed and V.I. Birss, Nanoscale, 2, 793 (2010); doi:10.1039/c0nr00011f.
G. He, G.W. Meng, L.D. Zhang and M. Liu, Appl. Phys. Lett., 91, 232910 (2007); doi:10.1063/1.2813620.
F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN (1991).
T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, ASM International, Metals Park, OH, edn 2 (1996).