Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Incremental Curing Agent Additions on Thermal Degradation of Polydimethylsiloxane in Air: A Kinetic Study
Corresponding Author(s) : U.B. Deshannavar
Asian Journal of Chemistry,
Vol. 26 No. 14 (2014): Vol 26 Issue 14
Abstract
Polydimethylsiloxane samples produced via several curing agent: Elastomer base ratios (5, 10, 15 and 20 w/w %) have been thermally degraded under air atmosphere. Thermogravimetric analysis shows that for all polydimethylsiloxane samples, the onset of significant oxidative degradation is at 290 °C and subsequently two distinct degradation stages (290-400 and 400-600 °C) can be observed. At temperatures higher than 600 °C, polydimethylsiloxane samples produced using 5, 10, 15 and 20 wt % curing agent experience weight reductions by 60, 53, 47 and 42 %, respectively. Linear regression analysis using LINEST function in Microsoft Excel indicates that data within the 290-400 °C range fit the Arrhenius model far better than the data within the 400-600 °C range. Increments in wt % curing agent from 5 to 15 % enhance the thermal stability of polydimethylsiloxane samples within the temperature range 290-400 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. de Buyl, Int. J. Adhes. Adhes., 21, 411 (2001); doi:10.1016/S0143-7496(01)00018-5.
- Y. Ikada, Biomaterials, 15, 725 (1994); doi:10.1016/0142-9612(94)90025-6.
- S. Köster, F.E. Angilè, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths and D.A. Weitz, Lab Chip, 8, 1110 (2008); doi:10.1039/b802941e.
- R.N. Santra, P.G. Mukunda, G.B. Nando and T.K. Chaki, Thermochim. Acta, 219, 283 (1993); doi:10.1016/0040-6031(93)80505-5.
- G. Deshpande and M.E. Rezac, Polym. Degrad. Stab., 76, 17 (2002); doi:10.1016/S0141-3910(01)00261-0.
- Q.T. Nguyen, Z. Bendjama, R. Clement and Z. Ping, Phys. Chem. Chem. Phys., 1, 2761 (1999); doi:10.1039/a900765b.
- F. Kolar, J. Svitilova and V. Machovic, Mater. Chem. Phys., 85, 458 (2004); doi:10.1016/j.matchemphys.2004.02.013.
- N. Grassie and I.G. MacFarlane, Eur. Polym. J., 14, 875 (1978); doi:10.1016/0014-3057(78)90084-8.
- R.N. Lewis, J. Am. Chem. Soc., 70, 1115 (1948); doi:10.1021/ja01183a073.
- G. Camino, S.M. Lomakin and M. Lazzari, Polymer, 42, 2395 (2001); doi:10.1016/S0032-3861(00)00652-2.
- Y. Han, J. Zhang, L. Shi, S. Qi, J. Cheng and R. Jin, Polym. Degrad. Stab., 93, 242 (2008); doi:10.1016/j.polymdegradstab.2007.09.010.
- K.G. Mansaray and A.E. Ghaly, Biomass Bioenergy, 17, 19 (1999); doi:10.1016/S0961-9534(99)00022-7.
- S. Yagmur and T. Durusoy, Energy Sources A, 31, 1227 (2009); doi:10.1080/15567030801952292.
- M. Jeguirim and G. Trouve, Bioresour. Technol., 100, 4026 (2009); doi:10.1016/j.biortech.2009.03.033.
- C.Y. Yin and B.M. Goh, Energy Sources A, 34, 246 (2011); doi:10.1080/15567030903586048.
- C.Y. Yin and Z.T. Jiang, J. Energy Institute, 85, 57 (2012); doi:10.1179/1743967111Z.0000000006.
- S. Vyazovkin and C.A. Wight, Thermochim. Acta, 340-341, 53 (1999); doi:10.1016/S0040-6031(99)00253-1.
References
F. de Buyl, Int. J. Adhes. Adhes., 21, 411 (2001); doi:10.1016/S0143-7496(01)00018-5.
Y. Ikada, Biomaterials, 15, 725 (1994); doi:10.1016/0142-9612(94)90025-6.
S. Köster, F.E. Angilè, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths and D.A. Weitz, Lab Chip, 8, 1110 (2008); doi:10.1039/b802941e.
R.N. Santra, P.G. Mukunda, G.B. Nando and T.K. Chaki, Thermochim. Acta, 219, 283 (1993); doi:10.1016/0040-6031(93)80505-5.
G. Deshpande and M.E. Rezac, Polym. Degrad. Stab., 76, 17 (2002); doi:10.1016/S0141-3910(01)00261-0.
Q.T. Nguyen, Z. Bendjama, R. Clement and Z. Ping, Phys. Chem. Chem. Phys., 1, 2761 (1999); doi:10.1039/a900765b.
F. Kolar, J. Svitilova and V. Machovic, Mater. Chem. Phys., 85, 458 (2004); doi:10.1016/j.matchemphys.2004.02.013.
N. Grassie and I.G. MacFarlane, Eur. Polym. J., 14, 875 (1978); doi:10.1016/0014-3057(78)90084-8.
R.N. Lewis, J. Am. Chem. Soc., 70, 1115 (1948); doi:10.1021/ja01183a073.
G. Camino, S.M. Lomakin and M. Lazzari, Polymer, 42, 2395 (2001); doi:10.1016/S0032-3861(00)00652-2.
Y. Han, J. Zhang, L. Shi, S. Qi, J. Cheng and R. Jin, Polym. Degrad. Stab., 93, 242 (2008); doi:10.1016/j.polymdegradstab.2007.09.010.
K.G. Mansaray and A.E. Ghaly, Biomass Bioenergy, 17, 19 (1999); doi:10.1016/S0961-9534(99)00022-7.
S. Yagmur and T. Durusoy, Energy Sources A, 31, 1227 (2009); doi:10.1080/15567030801952292.
M. Jeguirim and G. Trouve, Bioresour. Technol., 100, 4026 (2009); doi:10.1016/j.biortech.2009.03.033.
C.Y. Yin and B.M. Goh, Energy Sources A, 34, 246 (2011); doi:10.1080/15567030903586048.
C.Y. Yin and Z.T. Jiang, J. Energy Institute, 85, 57 (2012); doi:10.1179/1743967111Z.0000000006.
S. Vyazovkin and C.A. Wight, Thermochim. Acta, 340-341, 53 (1999); doi:10.1016/S0040-6031(99)00253-1.