Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of High Current Density in Electrocoagulation Process for Sewage Treatment
Corresponding Author(s) : A.W. Zularisam
Asian Journal of Chemistry,
Vol. 26 No. 14 (2014): Vol 26 Issue 14
Abstract
Treatment of sewage wastewater by electrocoagulation with high cell current densities (605 A/m2, 908 A/m2, 1211 A/m2, 1513 A/m2 and 1816 A/m2) using stainless steel, iron and aluminum electrodes were studied. High current densities applied were very effective for the removal of chemical oxygen demand, biochemical oxygen demand and suspended solid in 0.5 h. In the electrocoagulation of sewage wastewater, the effect of electrode material, current densities, electrocoagulation time, inter-electrode distance and initial pH were examined. The optimum operating range for each operating variable was experimentally determined in order to provide an economical and effective treatment for the sewage wastewater. Therefore, the optimum condition for this treatment is in 0.5 h, by using stainless steel electrode, at 1816 A/m2, in pH 7 and 10 mm electrode distances. The optimum treatment condition reduced chemical oxygen demand by 98.07 %, biochemical oxygen demand by 98.07 % and suspended solid by 97.64 % and the anode loss during the experiment was 9.2 × 102 g.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Gijzen, Water Sci. Technol., 45, 321 (2002).
- A.A. Bukhari, Bioresour. Technol., 99, 914 (2008); doi:10.1016/j.biortech.2007.03.015.
- P. Grau, Water Sci. Technol., 33, 39 (1996); doi:10.1016/0273-1223(96)00259-4.
- X. Chen, G. Chen and P.L. Yue, Sep. Purif. Technol., 19, 65 (2000); doi:10.1016/S1383-5866(99)00072-6.
- C. Feng, N. Sugiura, S. Shimada and T. Maekawa, J. Hazard. Mater., 103, 65 (2003); doi:10.1016/S0304-3894(03)00222-X.
- C. Phalakornkule, J. Mangmeemak, K. Intrachod and B. Nuntakumjorn, Sci. Asia, 36, 142 (2010); doi:10.2306/scienceasia1513-1874.2010.36.142.
- Y.M. Zheng and J.P. Chen, Handbook of Advanced Industrial and Hazar-dous Wastes Treatment-II, Taylor and Francis & CRC Press, p. 30 (2008).
- M. Kobya, H. Hiz, E. Senturk, C. Aydiner and E. Demirbas, Desalination, 190, 201 (2006); doi:10.1016/j.desal.2005.10.006.
- M.F. Pouet and A. Grasmick, Water Sci. Technol., 31, 275 (1995); doi:10.1016/0273-1223(95)00230-K.
- I. Kabdaşli, T. Arslan, T. Olmez-Hanci, I. Arslan-Alaton and O. Tünay, J. Hazard. Mater., 165, 838 (2009); doi:10.1016/j.jhazmat.2008.10.065.
- F. Akbal and S. Camci, Desalination, 269, 214 (2011); doi:10.1016/j.desal.2010.11.001.
- Ö. Hanay and H. Hasar, J. Hazard. Mater., 189, 572 (2011); doi:10.1016/j.jhazmat.2011.02.073.
- A. Shafaei, E. Pajootan, M. Nikazar and M. Arami, Desalination, 279, 121 (2011); doi:10.1016/j.desal.2011.05.070.
- A. Shafaei, M. Rezayee, M. Arami and M. Nikazar, Desalination, 260, 23 (2010); doi:10.1016/j.desal.2010.05.006.
- B. Al-Aji, Y. Yavuz and A.S. Koparal, Sep. Purif. Technol., 86, 248 (2012); doi:10.1016/j.seppur.2011.11.011.
- A. Shafaei, M. Rezaie and M. Nikazar, Chem. Eng. Process., 50, 1115 (2011); doi:10.1016/j.cep.2011.10.003.
- I. Heidmann and M. Calmano, J. Hazard. Mater., 152, 934 (2008); doi:10.1016/j.jhazmat.2007.07.068.
- N. Meunier, P. Drogui, G. Mercier and J.F. Blais, Sep. Purif. Technol., 137, 581 (2006).
- B. Merzouk, B. Gourich, A. Sekki, K. Madani and M. Chibane, J. Hazard. Mater., 164, 215 (2009); doi:10.1016/j.jhazmat.2008.07.144.
- M. Kobya, E. Demirbas, O.T. Can and M. Bayramoglu, J. Hazard. Mater., 132, 183 (2006); doi:10.1016/j.jhazmat.2005.07.084.
- E.A. Vik, D.A. Carlson, A.S. Eikum and E.T. Gjessing, Water Res., 18, 1355 (1984); doi:10.1016/0043-1354(84)90003-4.
- N. Daneshvar, A. Oladegaragoze and N. Djafarzadeh, J. Hazard. Mater., 129, 116 (2006); doi:10.1016/j.jhazmat.2005.08.033.
- Y. Yuan, T. Yuan, D. Wang, J. Tang and S. Zhou, Bioresour. Technol., 144, 115 (2013); doi:10.1016/j.biortech.2013.06.075.
- J.P.S. Sidhu, W. Ahmed, W. Gernjak, R. Aryal, D. McCarthy, A. Palmer, P. Kolotelo and S. Toze, Sci. Total Environ., 463-464, 488 (2013); doi:10.1016/j.scitotenv.2013.06.020.
- S.M. Rhind, C.E. Kyle, H. Ruffie, E. Calmettes, M. Osprey, Z.L. Zhang, D. Hamilton and C. McKenzie, Environ. Pollut., 181, 262 (2013); doi:10.1016/j.envpol.2013.06.011.
- Y. Sun, H. Huang, Y. Sun, C. Wang, X.L. Shi, H.Y. Hu, T. Kameya and K. Fujie, Environ. Pollut., 180, 339 (2013); doi:10.1016/j.envpol.2013.05.006.
References
H. Gijzen, Water Sci. Technol., 45, 321 (2002).
A.A. Bukhari, Bioresour. Technol., 99, 914 (2008); doi:10.1016/j.biortech.2007.03.015.
P. Grau, Water Sci. Technol., 33, 39 (1996); doi:10.1016/0273-1223(96)00259-4.
X. Chen, G. Chen and P.L. Yue, Sep. Purif. Technol., 19, 65 (2000); doi:10.1016/S1383-5866(99)00072-6.
C. Feng, N. Sugiura, S. Shimada and T. Maekawa, J. Hazard. Mater., 103, 65 (2003); doi:10.1016/S0304-3894(03)00222-X.
C. Phalakornkule, J. Mangmeemak, K. Intrachod and B. Nuntakumjorn, Sci. Asia, 36, 142 (2010); doi:10.2306/scienceasia1513-1874.2010.36.142.
Y.M. Zheng and J.P. Chen, Handbook of Advanced Industrial and Hazar-dous Wastes Treatment-II, Taylor and Francis & CRC Press, p. 30 (2008).
M. Kobya, H. Hiz, E. Senturk, C. Aydiner and E. Demirbas, Desalination, 190, 201 (2006); doi:10.1016/j.desal.2005.10.006.
M.F. Pouet and A. Grasmick, Water Sci. Technol., 31, 275 (1995); doi:10.1016/0273-1223(95)00230-K.
I. Kabdaşli, T. Arslan, T. Olmez-Hanci, I. Arslan-Alaton and O. Tünay, J. Hazard. Mater., 165, 838 (2009); doi:10.1016/j.jhazmat.2008.10.065.
F. Akbal and S. Camci, Desalination, 269, 214 (2011); doi:10.1016/j.desal.2010.11.001.
Ö. Hanay and H. Hasar, J. Hazard. Mater., 189, 572 (2011); doi:10.1016/j.jhazmat.2011.02.073.
A. Shafaei, E. Pajootan, M. Nikazar and M. Arami, Desalination, 279, 121 (2011); doi:10.1016/j.desal.2011.05.070.
A. Shafaei, M. Rezayee, M. Arami and M. Nikazar, Desalination, 260, 23 (2010); doi:10.1016/j.desal.2010.05.006.
B. Al-Aji, Y. Yavuz and A.S. Koparal, Sep. Purif. Technol., 86, 248 (2012); doi:10.1016/j.seppur.2011.11.011.
A. Shafaei, M. Rezaie and M. Nikazar, Chem. Eng. Process., 50, 1115 (2011); doi:10.1016/j.cep.2011.10.003.
I. Heidmann and M. Calmano, J. Hazard. Mater., 152, 934 (2008); doi:10.1016/j.jhazmat.2007.07.068.
N. Meunier, P. Drogui, G. Mercier and J.F. Blais, Sep. Purif. Technol., 137, 581 (2006).
B. Merzouk, B. Gourich, A. Sekki, K. Madani and M. Chibane, J. Hazard. Mater., 164, 215 (2009); doi:10.1016/j.jhazmat.2008.07.144.
M. Kobya, E. Demirbas, O.T. Can and M. Bayramoglu, J. Hazard. Mater., 132, 183 (2006); doi:10.1016/j.jhazmat.2005.07.084.
E.A. Vik, D.A. Carlson, A.S. Eikum and E.T. Gjessing, Water Res., 18, 1355 (1984); doi:10.1016/0043-1354(84)90003-4.
N. Daneshvar, A. Oladegaragoze and N. Djafarzadeh, J. Hazard. Mater., 129, 116 (2006); doi:10.1016/j.jhazmat.2005.08.033.
Y. Yuan, T. Yuan, D. Wang, J. Tang and S. Zhou, Bioresour. Technol., 144, 115 (2013); doi:10.1016/j.biortech.2013.06.075.
J.P.S. Sidhu, W. Ahmed, W. Gernjak, R. Aryal, D. McCarthy, A. Palmer, P. Kolotelo and S. Toze, Sci. Total Environ., 463-464, 488 (2013); doi:10.1016/j.scitotenv.2013.06.020.
S.M. Rhind, C.E. Kyle, H. Ruffie, E. Calmettes, M. Osprey, Z.L. Zhang, D. Hamilton and C. McKenzie, Environ. Pollut., 181, 262 (2013); doi:10.1016/j.envpol.2013.06.011.
Y. Sun, H. Huang, Y. Sun, C. Wang, X.L. Shi, H.Y. Hu, T. Kameya and K. Fujie, Environ. Pollut., 180, 339 (2013); doi:10.1016/j.envpol.2013.05.006.