Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Structure, Vibrational Spectra, Theoretical NBO and HOMO-LUMO Analysis of Bi-Glycine Hydrobromide by DFT Method
Corresponding Author(s) : N. Balamurugan
Asian Journal of Chemistry,
Vol. 26 No. 14 (2014): Vol 26 Issue 14
Abstract
An organic non linear optical material of bi-glycine hydrobromide was successfully grown by slow evaporation method. The optimized molecular geometry, harmonic vibrational spectra, natural bond orbital (NBO) analysis, highest occupied molecular orbital and lowest un occupied molecular orbital, milliken atomic charge, thermodynamic properties of zero-point vibrational energies, rotational constants, dipole moment, entropies were calculated for the title compound by density functional B3LYP method with 6.31 ++G(d,p) basis set using Gaussion 03 W program program package on a intel core i3/1.6 GHz personal computer. We also recorded the FT-IR, FT Raman spectra of bi-glycine hydrobromide at room temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Bhowmik, S. Tan, A.C. Ahyi, J.A, Dharmadhikari, A.K. Dharmadhikari and D. Mathur, Opt. Commun., 280, 472 (2007); doi:10.1016/j.optcom.2007.08.035.
- S.B. Monaco, L.E. Davis, S.P. Velsko, F.T. Wang, D. Eimerl and A.J. Zalkin, J. Cryst. Growth, 85, 252 (1987); doi:10.1016/0022-0248(87)90231-4.
- K. Meera, R. Muralidharan, R. Dhanasekaran, P. Manyum and P. Ramasamy, J. Cryst. Growth, 263, 510 (2004); doi:10.1016/j.jcrysgro.2003.11.093.
- E.E.A. Shepherd, J.N. Sherwood, G.S. Simpson and C.S. Yoon, J. Cryst. Growth, 113, 360 (1991); doi:10.1016/0022-0248(91)90068-G.
- Ch. Bosshard, K. Sutter, R. Schiesser and P. Gunter, J. Opt. Soc. Am. B, 10, 867 (1993); doi:10.1364/JOSAB.10.000867.
- J. Wiesner, K. Fucik, K. Kettler, J. Sakowski, R. Ortmann, H. Jomaa and M. Schlitzer, Bioorg. Med. Chem. Lett., 13, 1539 (2003); doi:10.1016/S0960-894X(03)00179-3.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, Gaussian 03, Revision C.02 (2004).
- H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); doi:10.1002/jcc.540030212.
- E.D. Glenderina, A.E, Read, J.E. Carpenter and F. Weinhold, NBO Version 3.1 TCI, University of Wisconsin, Madison (1998).
- M.D. Aggarwal, J. Stephens, A.K. Batra and R.B. Lal, J. Optoelectron. Adv. Mater., 5, 555 (2003).
- E.M. Hampton, B.S. Shah and J.N. Sherwood, J. Cryst. Growth, 22, 22 (1974); doi:10.1016/0022-0248(74)90053-0.
- C.N. Nanev, Cryst. Res. Technol., 39, 3 (2004); doi:10.1002/crat.200310142.
- M.N. Bhat and S.M. Dharmaprakash, J. Cryst. Growth, 235, 511 (2002); doi:10.1016/S0022-0248(01)01799-7.
- D.A. Kleinman, Phys. Rev., 126, 1977 (1962); doi:10.1103/PhysRev.126.1977.
- J. Karpagam, N. Sundaraganesan, S. Sebastian, S. Manoharan and M. Kurt, J. Raman Spectorsc., 41, 53 (2010); doi:10.1002/jrs.2408.
- R. Zhang, B. Du, G. Sun and Y.X. Sun, Spectrochim. Acta A, 75, 1115 (2010); doi:10.1016/j.saa.2009.12.067.
- H. Tanak, J. Mol. Struct. (Theochem.), 950, 5 (2010); doi:10.1016/j.theochem.2010.03.015.
- S. Sampathkrishnan, N. Balamurugan, R. Kumutha, Y. Vidyalakshmi and S. Muthu, J. Miner. Mater. Chacter. Eng., 11, 597 (2012).
- M. Silverstein, G. Clayton Bassler and C. Morril, Spectroscopic Identification of Organic Compounds, John Wiley, New York (1980).
- E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations, Dover Publications Inc., New York (1980).
- L. Segal and F.V. Eggerton, Appl. Spectrosc., 15, 112 (1961); doi:10.1366/000370261774426948.
- N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra or Organic Structure, Wiley, New York (1994).
- E.J. Baran, I. Viera and M.H. Torre, Spectrochim. Acta A, 66, 114 (2007); doi:10.1016/j.saa.2006.01.052.
- S.M. Cravan and F.F. Bentley, Appl. Spectrosc., 26, 449 (1971); doi:10.1366/000370272774351967.
- R.M. Silverstein and F.X. Webster, Spectrometric Identification of Organic Compounds, Wiley, Asia, edn 6 (2003).
- I. Fischmeister, Spectrochim. Acta A, 20, 1071 (1964); doi:10.1016/0371-1951(64)80107-7.
- N.B. Colthup, L.H. Daly and S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, edn 2 (1985).
- M. Szafran, A. Komasa and E. Bartoszak-Adamska, J. Mol. Struct. (Themochem), 827, 101 (2007); doi:10.1016/j.molstruc.2006.05.012.
- A. James, A.A. Raj, R. Reghunathan, V.S. Jayakumar and I.H. Joe, J.Raman Spectrosc., 37, 1381 (2006); doi:10.1002/jrs.1554.
- J.- Liu, Z.- Chen and S.- Yuan, J. Zhejiang Univ. Sci., 6B, 584 (2005); doi:10.1631/jzus.2005.B0584.
- S. Sebastian and N. Sundaraganesan, Spectrochim. Acta A, 75, 941 (2010); doi:10.1016/j.saa.2009.11.030.
- S. Gunasekaran, R.A. Balaji, S. Kumerasan, G. Anand and S. Srinivasan, Can. J. Anal. Sci. Spectrosc., 53, 149 (2008).
- E. Kavitha, N. Sundaraganesan and S. Sebstan, Indian J. Pure Appl. Phys., 48, 20 (2010).
- V.K. Rastogi, M.A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang and S.P. Ojha, J. Raman Spectrosc, 38, 1227 (2007); doi:10.1002/jrs.1725.
- M. Alcolea Palafox, Int. J. Quantum Chem., 77, 661 (2000); doi:10.1002/(SICI)1097-461X(2000)77:3<661::AID-QUA7>3.0.CO;2-J.
References
A.K. Bhowmik, S. Tan, A.C. Ahyi, J.A, Dharmadhikari, A.K. Dharmadhikari and D. Mathur, Opt. Commun., 280, 472 (2007); doi:10.1016/j.optcom.2007.08.035.
S.B. Monaco, L.E. Davis, S.P. Velsko, F.T. Wang, D. Eimerl and A.J. Zalkin, J. Cryst. Growth, 85, 252 (1987); doi:10.1016/0022-0248(87)90231-4.
K. Meera, R. Muralidharan, R. Dhanasekaran, P. Manyum and P. Ramasamy, J. Cryst. Growth, 263, 510 (2004); doi:10.1016/j.jcrysgro.2003.11.093.
E.E.A. Shepherd, J.N. Sherwood, G.S. Simpson and C.S. Yoon, J. Cryst. Growth, 113, 360 (1991); doi:10.1016/0022-0248(91)90068-G.
Ch. Bosshard, K. Sutter, R. Schiesser and P. Gunter, J. Opt. Soc. Am. B, 10, 867 (1993); doi:10.1364/JOSAB.10.000867.
J. Wiesner, K. Fucik, K. Kettler, J. Sakowski, R. Ortmann, H. Jomaa and M. Schlitzer, Bioorg. Med. Chem. Lett., 13, 1539 (2003); doi:10.1016/S0960-894X(03)00179-3.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, Gaussian 03, Revision C.02 (2004).
H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); doi:10.1002/jcc.540030212.
E.D. Glenderina, A.E, Read, J.E. Carpenter and F. Weinhold, NBO Version 3.1 TCI, University of Wisconsin, Madison (1998).
M.D. Aggarwal, J. Stephens, A.K. Batra and R.B. Lal, J. Optoelectron. Adv. Mater., 5, 555 (2003).
E.M. Hampton, B.S. Shah and J.N. Sherwood, J. Cryst. Growth, 22, 22 (1974); doi:10.1016/0022-0248(74)90053-0.
C.N. Nanev, Cryst. Res. Technol., 39, 3 (2004); doi:10.1002/crat.200310142.
M.N. Bhat and S.M. Dharmaprakash, J. Cryst. Growth, 235, 511 (2002); doi:10.1016/S0022-0248(01)01799-7.
D.A. Kleinman, Phys. Rev., 126, 1977 (1962); doi:10.1103/PhysRev.126.1977.
J. Karpagam, N. Sundaraganesan, S. Sebastian, S. Manoharan and M. Kurt, J. Raman Spectorsc., 41, 53 (2010); doi:10.1002/jrs.2408.
R. Zhang, B. Du, G. Sun and Y.X. Sun, Spectrochim. Acta A, 75, 1115 (2010); doi:10.1016/j.saa.2009.12.067.
H. Tanak, J. Mol. Struct. (Theochem.), 950, 5 (2010); doi:10.1016/j.theochem.2010.03.015.
S. Sampathkrishnan, N. Balamurugan, R. Kumutha, Y. Vidyalakshmi and S. Muthu, J. Miner. Mater. Chacter. Eng., 11, 597 (2012).
M. Silverstein, G. Clayton Bassler and C. Morril, Spectroscopic Identification of Organic Compounds, John Wiley, New York (1980).
E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations, Dover Publications Inc., New York (1980).
L. Segal and F.V. Eggerton, Appl. Spectrosc., 15, 112 (1961); doi:10.1366/000370261774426948.
N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra or Organic Structure, Wiley, New York (1994).
E.J. Baran, I. Viera and M.H. Torre, Spectrochim. Acta A, 66, 114 (2007); doi:10.1016/j.saa.2006.01.052.
S.M. Cravan and F.F. Bentley, Appl. Spectrosc., 26, 449 (1971); doi:10.1366/000370272774351967.
R.M. Silverstein and F.X. Webster, Spectrometric Identification of Organic Compounds, Wiley, Asia, edn 6 (2003).
I. Fischmeister, Spectrochim. Acta A, 20, 1071 (1964); doi:10.1016/0371-1951(64)80107-7.
N.B. Colthup, L.H. Daly and S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, edn 2 (1985).
M. Szafran, A. Komasa and E. Bartoszak-Adamska, J. Mol. Struct. (Themochem), 827, 101 (2007); doi:10.1016/j.molstruc.2006.05.012.
A. James, A.A. Raj, R. Reghunathan, V.S. Jayakumar and I.H. Joe, J.Raman Spectrosc., 37, 1381 (2006); doi:10.1002/jrs.1554.
J.- Liu, Z.- Chen and S.- Yuan, J. Zhejiang Univ. Sci., 6B, 584 (2005); doi:10.1631/jzus.2005.B0584.
S. Sebastian and N. Sundaraganesan, Spectrochim. Acta A, 75, 941 (2010); doi:10.1016/j.saa.2009.11.030.
S. Gunasekaran, R.A. Balaji, S. Kumerasan, G. Anand and S. Srinivasan, Can. J. Anal. Sci. Spectrosc., 53, 149 (2008).
E. Kavitha, N. Sundaraganesan and S. Sebstan, Indian J. Pure Appl. Phys., 48, 20 (2010).
V.K. Rastogi, M.A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang and S.P. Ojha, J. Raman Spectrosc, 38, 1227 (2007); doi:10.1002/jrs.1725.
M. Alcolea Palafox, Int. J. Quantum Chem., 77, 661 (2000); doi:10.1002/(SICI)1097-461X(2000)77:3<661::AID-QUA7>3.0.CO;2-J.