Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrocracking of Used Cooking Oil into Biofuel Catalyzed by Nickel-Bentonite
Corresponding Author(s) : K. Wijaya
Asian Journal of Chemistry,
Vol. 26 No. 13 (2014): Vol 26 Issue 13
Abstract
Hydrocracking of used cooking oil catalyzed by Ni-bentonite has been conducted. Synthesis of Ni-bentonite was begun with the activation of bentonite by refluxing the bentonite using 6 M HCl followed by 1 % Ni metal impregnation derived from precursor NiCl2·6H2O. Ni-bentonite was analyzed by FT-IR, XRD and gas sorption analyzer. Its acidity value was analyzed by gravimetric sorption of pyridine base. Ni-bentonite catalyst was used for hydrocracking of used cooking oil by temperature variation of 300, 350, 400 and 450 °C. Hydrocracking products were analyzed by gas chromatography to be compared with the commercial gasoline, diesel oil and gas chromatography-mass spectrometer (GC-MS) to determine the content and composition of the biofuels. The experimental results showed that the activation of bentonite increased the acidity value of bentonite from 0.07838 mmol/g to 1.12 mmol/g. Ni-bentonite catalyst had the highest acidity of 1.19 mmol/g. Based on the analysis of the gas chromatography, hydrocracking products had components which synonymous with commercial gasoline and diesel oil. The optimum temperature of producing biofuel from used cooking oil with Ni-bentonite catalyst was 300 °C. Hydrocracking products contained 2-propanone, dodecanae, octanoic acid, decanoic acid, dodecanoic acid and 1,2-benzenedicarboxylic acid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Bhatia, A.R. Mohamed and N.A.A. Shah, Chem. Eng. J., 155, 347 (2009); doi:10.1016/j.cej.2009.07.020.
- A. Farojr and A. Dossantos, Catal. Today, 118, 402 (2006); doi:10.1016/j.cattod.2006.07.027.
- X. Dupain, D.J. Costa, C.J. Schaverien, M. Makkee and J.A. Moulijn, Appl. Catal. Environ, 72, 44 (2007); doi:10.1016/j.apcatb.2006.10.005.
- Hasanudin, M. Said, M. Faisal, M.H. Dahlan and K. Wijaya, Sustain. Environ. Res., 22, 395 (2012).
- Y. Wang, R.Y. Saleh and U. Ozkan, J. Catal., 231, 20 (2005); doi:10.1016/j.jcat.2004.12.010.
- G.W. Huber, P. O'connor and A. Corma, Appl. Catal. A, 329, 120 (2007); doi:10.1016/j.apcata.2007.07.002.
- H. Nabetani, S. Hagiwara, Y. Sagara, T.H. Soerawidjaya, A.H. Tambunan and K. Abdullah, J. Chem. Eng. Jpn., 40, 780 (2007).doi:10.1252/jcej.07WE057.
- D. Kubicka and L. Kaluza, Appl. Catal. A, 372, 199 (2010); doi:10.1016/j.apcata.2009.10.034.
- A. Hidayat, Rochmadi, K. Wijaya, H. Hinode and A. Budiman, Asian J. Chem., 25, 1569 (2013); doi:10.14233/ajchem.2013.13191.
- I. Fatimah, K. Wijaya and K.H. Setyawan, Bull. Chem. React. Eng. Catal., 3, 9 (2008); doi:10.9767/bcrec.3.1-3.17.9-13.
- K.V. Padmaja, N. Atheya and A.K. Bhatnagar, Biomass Bioenergy, 33, 1664 (2009); doi:10.1016/j.biombioe.2009.08.011.
- C.M.R. Prado and N.R. Antoniosi Filho, J. Anal. Appl. Pyrolysis, 86, 338 (2009); doi:10.1016/j.jaap.2009.08.005.
- S.I. Reshetnikov, E.A. Ivanov and A.N. Startsev, Chem. Eng. J., 134, 100 (2007); doi:10.1016/j.cej.2007.03.048.
- E.N. Rohmah, A. Rochmat and S.D. Sumbogo, Int. J. Environ. Bioenerg, 3, 201 (2012).
- F.A. Twaiq, N.A.M. Zabidi, A.R. Mohamed and S. Bhatia, Ind. Eng. Chem. Res., 38, 3230 (2003); doi:10.1021/ie980758f.
- F.A.A. Twaiq, A.R. Mohamad and S. Bhatia, Fuel Process. Technol., 85, 1283 (2004); doi:10.1016/j.fuproc.2003.08.003.
- K. Wijaya, S.P. Ani, S. Sudiono and N. Emi, Indo. J. Chem., 2, 22 (2002).
References
S. Bhatia, A.R. Mohamed and N.A.A. Shah, Chem. Eng. J., 155, 347 (2009); doi:10.1016/j.cej.2009.07.020.
A. Farojr and A. Dossantos, Catal. Today, 118, 402 (2006); doi:10.1016/j.cattod.2006.07.027.
X. Dupain, D.J. Costa, C.J. Schaverien, M. Makkee and J.A. Moulijn, Appl. Catal. Environ, 72, 44 (2007); doi:10.1016/j.apcatb.2006.10.005.
Hasanudin, M. Said, M. Faisal, M.H. Dahlan and K. Wijaya, Sustain. Environ. Res., 22, 395 (2012).
Y. Wang, R.Y. Saleh and U. Ozkan, J. Catal., 231, 20 (2005); doi:10.1016/j.jcat.2004.12.010.
G.W. Huber, P. O'connor and A. Corma, Appl. Catal. A, 329, 120 (2007); doi:10.1016/j.apcata.2007.07.002.
H. Nabetani, S. Hagiwara, Y. Sagara, T.H. Soerawidjaya, A.H. Tambunan and K. Abdullah, J. Chem. Eng. Jpn., 40, 780 (2007).doi:10.1252/jcej.07WE057.
D. Kubicka and L. Kaluza, Appl. Catal. A, 372, 199 (2010); doi:10.1016/j.apcata.2009.10.034.
A. Hidayat, Rochmadi, K. Wijaya, H. Hinode and A. Budiman, Asian J. Chem., 25, 1569 (2013); doi:10.14233/ajchem.2013.13191.
I. Fatimah, K. Wijaya and K.H. Setyawan, Bull. Chem. React. Eng. Catal., 3, 9 (2008); doi:10.9767/bcrec.3.1-3.17.9-13.
K.V. Padmaja, N. Atheya and A.K. Bhatnagar, Biomass Bioenergy, 33, 1664 (2009); doi:10.1016/j.biombioe.2009.08.011.
C.M.R. Prado and N.R. Antoniosi Filho, J. Anal. Appl. Pyrolysis, 86, 338 (2009); doi:10.1016/j.jaap.2009.08.005.
S.I. Reshetnikov, E.A. Ivanov and A.N. Startsev, Chem. Eng. J., 134, 100 (2007); doi:10.1016/j.cej.2007.03.048.
E.N. Rohmah, A. Rochmat and S.D. Sumbogo, Int. J. Environ. Bioenerg, 3, 201 (2012).
F.A. Twaiq, N.A.M. Zabidi, A.R. Mohamed and S. Bhatia, Ind. Eng. Chem. Res., 38, 3230 (2003); doi:10.1021/ie980758f.
F.A.A. Twaiq, A.R. Mohamad and S. Bhatia, Fuel Process. Technol., 85, 1283 (2004); doi:10.1016/j.fuproc.2003.08.003.
K. Wijaya, S.P. Ani, S. Sudiono and N. Emi, Indo. J. Chem., 2, 22 (2002).