Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Synthesis of Chloroacetic Acid with Various Cocatalysts in Acetic Anhydride Catalyzing Method
Corresponding Author(s) : Fu-Xiang Li
Asian Journal of Chemistry,
Vol. 26 No. 13 (2014): Vol 26 Issue 13
Abstract
In this paper, we introduce a method of synthesizing chloroacetic acid using acetyl chloride as catalyst and anhydrous ferric chloride, ferric chloride hexahydrate, zinc chloride and concentrated sulfuric acid (98 % H2SO4) as cocatalysts respectively with a variable frequency microwave oven as heater. From investigating the influences of cocatalysts in reaction, we draw a optimal condition that the yield and selectivity of chloroacetic acid are 98.11 and 98.58 % respectively when adding 0.4 g FeCl3 in mixture after reacting 3.5 h and in comparable with the corresponding percentages, 96.9 and 96.87 %, with 0.7 g ZnCl2 adding, the adding amount of 1.5 g 98 % H2SO4 result in a little lower percentages of 95.71 and 95.61 % correspondingly. We have speculated the cocatalytic mechanisms in chlorination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, John Wiley & Sons, Inc., p. 1512 (1992).
- P. Martikainen, T. Salmi, E. Paatero, L. Hummelstedt, P. Klein, H. Damén and T. Lindroos, J. Chem. Technol. Biotechnol., 40, 259 (1987); doi:10.1002/jctb.280400405.
- T. Salmi, P. Martikainen, E. Paatero, L. Hummelstedt, H. Damén and T. Lindroos, Chem. Eng. Sci., 43, 1143 (1988); doi:10.1016/0009-2509(88)85074-7.
- D.H. Wang and C.J. Zhai, Hebei J. Ind. Sci. Technol., 19, 40 (2002).
- Y.L. Xu, G.L. Liu and Z.Q. Zhu, Petrochem. Technol., 27, 313 (1998).
- L.S. Wang, G.Q. Song, Y. Meng, S.G. Li and F.X. Li, Asian. J. Chem., 25, 8997 (2013); doi:10.14233/ajchem.2013.14960.
- J.W. Xue, L. Wu, Z.P. Lv and F.X. Li, J. Taiyuan Univ. Technol., 6, 651 (1999).
- X.D. Zhang, F.X. Li, Z.P. Lv and J.W. Xue, J. Taiyuan Univ. Technol., 35, 315 (2004).
References
J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, John Wiley & Sons, Inc., p. 1512 (1992).
P. Martikainen, T. Salmi, E. Paatero, L. Hummelstedt, P. Klein, H. Damén and T. Lindroos, J. Chem. Technol. Biotechnol., 40, 259 (1987); doi:10.1002/jctb.280400405.
T. Salmi, P. Martikainen, E. Paatero, L. Hummelstedt, H. Damén and T. Lindroos, Chem. Eng. Sci., 43, 1143 (1988); doi:10.1016/0009-2509(88)85074-7.
D.H. Wang and C.J. Zhai, Hebei J. Ind. Sci. Technol., 19, 40 (2002).
Y.L. Xu, G.L. Liu and Z.Q. Zhu, Petrochem. Technol., 27, 313 (1998).
L.S. Wang, G.Q. Song, Y. Meng, S.G. Li and F.X. Li, Asian. J. Chem., 25, 8997 (2013); doi:10.14233/ajchem.2013.14960.
J.W. Xue, L. Wu, Z.P. Lv and F.X. Li, J. Taiyuan Univ. Technol., 6, 651 (1999).
X.D. Zhang, F.X. Li, Z.P. Lv and J.W. Xue, J. Taiyuan Univ. Technol., 35, 315 (2004).