Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Reductive Dehalogenation of ortho-Halogenated Phenols on Ag Electrode by in situ FTIR
Corresponding Author(s) : Meichao Li
Asian Journal of Chemistry,
Vol. 26 No. 13 (2014): Vol 26 Issue 13
Abstract
Electrochemical reductive dehalogenation reactions of ortho-halogenated phenols, namely, o-iodophenol (OIP), o-bromphenol (OBP) and o-chlorophenol (OCP) on Ag electrode in alkaline medium have been studied by in situ FTIR combined with cyclic voltammetry and computational calculations. The Ag electrode showed a high electrochemical activity for dehalogenation reactions of OBP and OIP in contrast with OCP under the similar conditions and the dehalogenation potential of OIP was more positive than OBP, reflecting more facile reduction of OIP on Ag electrode. On the basis of in situ FTIR of OCP on Ag electrode, it was not obvious and the electrochemical reduction reaction was quite weak. Therefore, the order of electrochemical reductive dehalogenation was OIP > OBP > OCP.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.T. Benedict, H.M. Stapleton, R.J. Letcher and C.L. Mitchelmore, Chemosphere, 69, 987 (2007); doi:10.1016/j.chemosphere.2007.05.010.
- H. Cheng, K. Scott and P.A. Christensen, Electrochim. Acta, 49, 729 (2004); doi:10.1016/j.electacta.2003.09.026.
- R.D. Coteiro and A.R.D. Andrade, J. Appl. Electrochem., 37, 691 (2007); doi:10.1007/s10800-007-9301-9.
- H. Cheng, K. Scott and P.A. Christensen, J. Electrochem. Soc., 150, D25 (2003); doi:10.1149/1.1531972.
- C. Schuth and M. Reinhard, Appl. Catal. B, 18, 215 (1998); doi:10.1016/S0926-3373(98)00037-X.
- C. Bellomunno, D. Bonanomi, L. Falciola, M. Longhi, P.R. Mussini, L.M. Doubova and G. Di Silvestro, Electrochim. Acta, 50, 2331 (2005); doi:10.1016/j.electacta.2004.10.047.
- M. Altarawneh, B.Z. Dlugogorski, E.M. Kennedy and J.C. Mackie, J. Phys. Chem. A, 112, 3680 (2008); doi:10.1021/jp712168n.
- M. Altarawneh, M.W. Radny, P.V. Smith, J.C. Mackie, E.M. Kennedy and B.Z. Dlugogorski, Appl. Surf. Sci., 254, 4218 (2008); doi:10.1016/j.apsusc.2008.01.045.
- S. Rondinini, P.R. Mussini, M. Specchia and A. Vertova, J. Electrochem. Soc., 148, D102 (2001); doi:10.1149/1.1379032.
- L. Tian, J.T. Li, J.Y. Ye, C.H. Zhen and S.G. Sun, J. Electroanal. Chem., 662, 137 (2011); doi:10.1016/j.jelechem.2011.04.028.
- X.Y. Jing, Guidance on the Application of Infrared Spectroscopy, Tianjin Science and Technology Press: Tianjin, pp 181-185, 200-202 (1992).
- J.X. Xie, J.B. Chang and X.M. Wang, The Application of Infrared Spectroscopy in Organic Chemistry and Medicinal Chemistry; Science Press: Beijing, pp 161-163 (2002).
- G.Y. Popova, Y.A. Chesalov and T.V. Andrushkevich, React. Kinet. Catal. Lett., 83, 353 (2004); doi:10.1023/B:REAC.0000046097.85909.b2.
- K.M. Su, T.Y. Pan and Y.L. Zhang, Spectrum Analysis Method; East China University of Science and Technology Press: Shanghai, pp 106-107 (2002).
- R. Chetty, P.A. Christensen, B.T. Golding and K. Scott, Appl. Catal. A, 271, 185 (2004); doi:10.1016/j.apcata.2004.02.059.
- S. Scirè, C. Crisafulli, R. Maggiore, S. Minicò and S. Galvagno, Appl. Surf. Sci., 93, 309 (1996); doi:10.1016/0169-4332(95)00348-7.
- W.C. Wu, L.F. Liao, C.F. Lien and J.L. Lin, Phys. Chem. Chem. Phys., 3, 4456 (2001); doi:10.1039/b104926g.
- A.A. Isse, L. Falciola, P.R. Mussini and A. Gennaro, Chem. Commum., 344 (2006); doi:10.1039/B513801A.
- Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL (2010).
References
R.T. Benedict, H.M. Stapleton, R.J. Letcher and C.L. Mitchelmore, Chemosphere, 69, 987 (2007); doi:10.1016/j.chemosphere.2007.05.010.
H. Cheng, K. Scott and P.A. Christensen, Electrochim. Acta, 49, 729 (2004); doi:10.1016/j.electacta.2003.09.026.
R.D. Coteiro and A.R.D. Andrade, J. Appl. Electrochem., 37, 691 (2007); doi:10.1007/s10800-007-9301-9.
H. Cheng, K. Scott and P.A. Christensen, J. Electrochem. Soc., 150, D25 (2003); doi:10.1149/1.1531972.
C. Schuth and M. Reinhard, Appl. Catal. B, 18, 215 (1998); doi:10.1016/S0926-3373(98)00037-X.
C. Bellomunno, D. Bonanomi, L. Falciola, M. Longhi, P.R. Mussini, L.M. Doubova and G. Di Silvestro, Electrochim. Acta, 50, 2331 (2005); doi:10.1016/j.electacta.2004.10.047.
M. Altarawneh, B.Z. Dlugogorski, E.M. Kennedy and J.C. Mackie, J. Phys. Chem. A, 112, 3680 (2008); doi:10.1021/jp712168n.
M. Altarawneh, M.W. Radny, P.V. Smith, J.C. Mackie, E.M. Kennedy and B.Z. Dlugogorski, Appl. Surf. Sci., 254, 4218 (2008); doi:10.1016/j.apsusc.2008.01.045.
S. Rondinini, P.R. Mussini, M. Specchia and A. Vertova, J. Electrochem. Soc., 148, D102 (2001); doi:10.1149/1.1379032.
L. Tian, J.T. Li, J.Y. Ye, C.H. Zhen and S.G. Sun, J. Electroanal. Chem., 662, 137 (2011); doi:10.1016/j.jelechem.2011.04.028.
X.Y. Jing, Guidance on the Application of Infrared Spectroscopy, Tianjin Science and Technology Press: Tianjin, pp 181-185, 200-202 (1992).
J.X. Xie, J.B. Chang and X.M. Wang, The Application of Infrared Spectroscopy in Organic Chemistry and Medicinal Chemistry; Science Press: Beijing, pp 161-163 (2002).
G.Y. Popova, Y.A. Chesalov and T.V. Andrushkevich, React. Kinet. Catal. Lett., 83, 353 (2004); doi:10.1023/B:REAC.0000046097.85909.b2.
K.M. Su, T.Y. Pan and Y.L. Zhang, Spectrum Analysis Method; East China University of Science and Technology Press: Shanghai, pp 106-107 (2002).
R. Chetty, P.A. Christensen, B.T. Golding and K. Scott, Appl. Catal. A, 271, 185 (2004); doi:10.1016/j.apcata.2004.02.059.
S. Scirè, C. Crisafulli, R. Maggiore, S. Minicò and S. Galvagno, Appl. Surf. Sci., 93, 309 (1996); doi:10.1016/0169-4332(95)00348-7.
W.C. Wu, L.F. Liao, C.F. Lien and J.L. Lin, Phys. Chem. Chem. Phys., 3, 4456 (2001); doi:10.1039/b104926g.
A.A. Isse, L. Falciola, P.R. Mussini and A. Gennaro, Chem. Commum., 344 (2006); doi:10.1039/B513801A.
Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL (2010).